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ABSTRACT 

Past research on Hybrid Electric Vehicles (HEVs) focused primarily on improving their fuel economy. Emission 
reduction is another important performance attribute that needs to be addressed. When emissions are considered for 
hybrid vehicles with a gasoline engine, horizon-based optimization methodologies should be used because the light-
off of the three-way catalytic converter heavily depends on the warming-up of catalyst temperature. In this paper, 
we propose a systematic design method for a cold-start supervisory control algorithm based on the Dynamic 
Programming (DP) methodology. First, a system-level parallel HEV model is developed to efficiently predict 
tailpipe emissions as well as fuel economy.The optimal control problem for minimization of cold-start emissions 
and fuel consumption is then solved via DP. Since DP solution cannot be directly implemented as a real-time 
controller, more useful control strategies are extracted from DP solution over the entire state space via the 
comprehensive extraction method. The DP results indicate that the engine on/off, gear-shift, and power-split 
strategies must be properly adjusted to achieve fast catalyst warm-up with minimal cold-start engine-out emissions. 
Based on DP results, we proposed a rule-based control algorithm that is easy to implement and achieves near-
optimal fuel economy and emissions performance. 

 
Keywords — Emissions, Fuel Economy, Hybrid Electric Vehicles, Supervisory Powertrain Control 

 
1 INTRODUCTION 

Hybrid Electric Vehicles (HEVs) have been introduced to the market as a key technology for next generation 
ground vehicles, and fuel economy has been the focus of the past research [1]-[8]. Reduction of emissions is another 
major performance metric due to tightening regulations as well as environmental concerns [9]. Accurate prediction 
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of tailpipe emissions requires modeling of transient emission dynamics. If we focus on the catalytic converter 
dynamics and its conversion efficiency, it is possible to develop a simple yet accurate model that is appropriate for 
the study of both fuel economy and emissions. 

A number of articles have presented models for a three-way catalytic converter (TWC) to describe the 
heat/mass transfer in the after-treatment system and conversion efficiency as a function of the catalyst brick 
temperature and A/F ratio [10]-[15]. These models are primarily used for design and evaluation and are too complex 
for the development of control algorithms. As an alternative, lumped parameter models that utilize engine thermal 
networks and empirical data to describe exhaust system temperatures were developed [16][17]. These models are 
computationally efficient and can predict the after-treatment system responses to various engine loads and driving 
cycles. Recently, several control-oriented TWC models were developed [18]-[22]. These models are suitable for 
low-level controls because they focus on the effect of A/F ratio and spark timing on the combustion process and the 
catalyst warm-up. The supervisory control for HEV, on the other hand, needs to focus on the effect of power-split 
and gear selections on TWC dynamics and tailpipe emissions. In this study, we assume that proper servo-loops, i.e., 
A/F ratio and spark timing control, have been designed appropriately for all desired engine power commands. 

Instantaneous and horizon optimal control are widely used in the design of supervisory control strategy [7]. The 
Dynamic Programming (DP) method guarantees global optimality even for nonlinear constrained systems and has 
been widely studied. One of its key challenges is the heavy computation load. In contrast, instantaneous 
optimization methods such as Equivalent Consumption Minimization Strategy (ECMS) are computationally 
efficient, but global optimality over the horizon is not guaranteed. The idea behind instantaneous optimal control 
approaches is that instantaneously optimized control commands may result in near-optimal performance [3][7], i.e., 

 ∫∫ ≈=∗
TT

dttutLdttutLJ
00

))(,(min))(,(min , (1) 

where L is the instantaneous cost function. For HEVs, Eq.(1) is true if the open circuit voltage and internal 
resistance maps are not functions of the battery State of Charge (SOC) [7]. However, this near-optimality no longer 
holds when emissions are considered because tailpipe emissions heavily depend on the catalyst temperature. 
Therefore, a combined fuel and emissions optimization problem must be solved through horizon optimization 
methods. 

A few recent HEV studies considered emission reduction as a part of the control objective and analyzed the 
trade-off between fuel economy and emissions [4],[23]-[26]. Most of them considered minimization of fuel 
consumption and engine-out emissions instead of tailpipe emissions [4][24][25]. Although reducing engine-out 
emissions helps to reduce tailpipe emissions, it is not the key factor. Since the conversion efficiency of a cold TWC 
is very low, fast catalyst warm-up and sustainment are the keys to minimizing tailpipe emissions. A study by 
Kolmanovsky et al. considered catalyst temperature as a dynamic state for a simplified hybrid powertrain model, 
and the optimal fuel economy problem with the maximum NOx constraint was solved by Sequential Quadratic 
Programming (SQP) [23]. Another study by Tate et al. formulated the tailpipe emission control problem for HEVs 
and solved it by shortest-path stochastic dynamic programming (SP-SDP), using a simplified after-treatment model 
[26]. These studies demonstrated that reduction of tailpipe emissions trades off with fuel economy, but the design of 
a real-time controller for optimal emissions and fuel economy performance was not discussed in the literature. The 
main contribution of the present paper is the development of a systematic design method for a supervisory 
powertrain controller (SPC) that simultaneously optimizes fuel economy and tailpipe emissions for an HEV with a 
TWC. 

The paper is organized as follows: In Section II, a HEV powertrain model, with a simple emission model, is 
developed, followed by the validation of the emission model. An optimal supervisory control problem that 
minimizes both fuel consumption and emissions is solved via DP, and the trade-off between fuel economy and 
emission are presented in Section III. In Section IV, a systematic design method of a near-optimal cold-start 
supervisory powertrain controller is developed via the comprehensive extraction method. Finally, conclusions are 
presented in Section V. 

 
2 HYBRID ELECTRIC VEHICLE MODEL 

Since the fuel consumption model for supervisory control of HEV has been extensively discussed in the 
literature [4][27][28], the focus of the vehicle model will be on the emission model.  
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Figure 1: Schematic of the parallel hybrid electric vehicle 

 
2.1 System Configuration  

The target vehicle is a compact SUV with a pre-transmission parallel (power-assist) hybrid configuration. 
Figure 1 shows the schematic of the target vehicle. An engine-disconnect clutch replaces the torque converter for 
improved efficiency. The pre-transmission configuration allows a smaller M/G, easier packaging, and reduced spin 
losses over the post-transmission type [29]. Parameters of the vehicle are listed in Table 1. 

Table 1: Vehicle parameters 

Vehicle Curb weight: 1597 kg 
2.4L, 4 Cylinder 
127kw@5300 rpm (170 hp) SI Engine 
217Nm@4500 rpm (160 lb-ft) 

Transmission Automated Manual Transmission 
4 speed, Gear Ratio: 2.95/1.62/1/0.68 
Rated power: 20 kW AC Motor Max Torque: 200 Nm 
Capacity: 6 Ah 
Max Power: 20 kW 
# of Module: 40 NiMH Battery 

Nominal Voltage: 7.5 volts/module 
 

2.2 Fuel Economy Model 
A simple two-state (vehicle speed and SOC) vehicle model is used to predict power and energy flows for the 

fuel economy evaluation. Other fast dynamics, such as intake manifold and motor dynamics, are neglected. Readers 
are referred to [4] for details. 
 
2.3 Emission Model 

The emission model needs to be simple yet accurate under various operating conditions. Figure 2 shows the 
architecture of the emission model. The emission model consists of two sub-models; engine thermal dynamics and 
after-treatment dynamics. The engine thermal dynamics takes the engine temperature into account for accurate 
prediction of the cold engine outputs since the quasi-static engine model only outputs steady-state (hot) engine data. 
The after-treatment dynamics includes catalyst brick temperature dynamics, which is critical for computing 
conversion efficiency of the TWC. 

2.3.1 Engine thermal dynamics 

The engine thermal dynamics is further divided into two sub-blocks, coolant temperature dynamics and 
correction factor. 
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Figure 2: Architecture of the emission model 

 
Coolant temperature dynamics: Although the cylinder wall temperature is the key variable that affects the 

combustion kinetics, the coolant temperature is frequently selected to represent the cylinder wall temperature 
because of 1) rapid response to the cylinder wall temperature, 2) ease of measurement, and 3) ease of modeling [17]. 
Under the assumption that the cooling system controller activates circulation of the coolant when the coolant 
temperature reaches a threshold value Tcool,max, a simple lumped thermal capacitor dynamics model is: 

 ( ) ( )
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where Tcool is coolant temperature, Tatm is atmospheric temperature, and τgain and τloss are time constants. Texh
CF 

indicates the corrected (cold) exhaust gas temperature. Although combustion flame temperature would be more 
appropriate for heat-gain source temperature, Texh is used instead due to its accessibility. 
 

Cold engine Correction Factor: For supervisory control purposes, we seek a simplified model that predicts cold 
engine outputs as a function of coolant temperature. One approach is to simply multiply hot engine outputs by a 
Correction Factor (CF), which is essentially a cold/hot emission ratio as a function of the coolant temperature. 
Murrell et al. collected experimental cold-start data from various engines and showed a clear correlation between 
CF and coolant temperature [17]. It was observed that CF can be approximated by an exponential function as in (3). 
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Figure 3: Correction factors as a function of coolant temperature for each engine outputs 
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where T0,j and KCF,j are curve-fitting parameters for each engine output  j. Figure 3 shows CF of each emission 
component, fuel consumption rate, torque, and exhaust temperature, as a function of coolant temperature. Note that 
the appropriate sign must be selected in (3) for each engine output. The cold engine outputs can be computed by 
multiplying hot engine outputs by CF as in (4). 

 jCFj j
CF ⋅=  (4) 

where j represents engine outputs such as HC, CO, NOx, Tinlet, Te (engine torque), and fm (fuel consumption rate). 

2.3.2 After-treatment dynamics 

The after-treatment system model (Figure 4) is divided into two parts; the TWC thermal dynamics and the 
conversion efficiency map. The TWC thermal dynamics calculates the catalyst brick temperature. Then, conversion 
efficiencies are calculated based on the catalyst brick temperature. 
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Figure 4: Schematic of the after-treatment system [30] 

 
TWC Thermal dynamics: Let us first define exhaust gas temperatures at two locations in the after-treatment 

system as shown in Figure 4: Tinlet and Texh are the exhaust gas temperatures at the TWC inlet and exhaust manifold 
respectively. Tinlet is available from the steady-state engine data and is plotted in Figure 5. In case Tinlet is not 
available experimentally, it can be estimated [16]. 
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Figure 5: Test data of the exhaust gas temperature at the catalyst inlet 
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Given the inlet gas temperature, the brick temperature dynamics are modeled as a lumped thermal capacitor: 

 ( ) ( ) ∑+−+−=
i

iengiconviccatatmsatmcat
CF

inletsengcat
cat WKTTAhTTAWh

dt
dT

Vc ,,,)( ηρ  (5) 

where Tcat is the catalyst brick temperature. The first term on the right side is heat gain from the exhaust gas, the 
second term is heat loss to the atmosphere, and the last term is the heat generated from emission conversion. Note 
that the heat transfer coefficient (hcat) is influenced by the gas flow rate, Weng. Assuming heat transfer coefficient hcat 
is a linear function of Weng, eq.(5) can be expressed as: 

 ( ) ( ) ∑+−+−=
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where τinlet and τatm are time constants; Kconv,i is a conversion heat generation constant for each reacting emission; 
ηconv,i is conversion efficiency of each emission; Weng,i is flow rate of each emission; and i represents type of 
emission. 
 

Conversion efficiency map: Based on the catalytic converter brick temperature, we can relate this information to 
the emission conversion efficiency [11]-[14], defined as: 

 
ieng
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,
, 1−≡η  (7) 

where Wtail,i is tailpipe flow rate of emission i. Both exponential and arctan functions are commonly used to 
approximate the conversion efficiency. In this study, arctan is selected due to its straightforward parameter tuning. 
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where Keff,i is a tuning parameter, and Tlightoff,i is the light-off temperature of emission i. The effect of the gas flow 
rate on conversion efficiency is approximated by a linear function [21]: 

 
iengiengiexh bWaW +⋅=)(,ξ  (9) 

Figure 6 illustrates HC conversion efficiency as a function of Tcat. Note that in addition to the above curve fitting 
equation, ηconv,i is saturated by its minimum and maximum conversion efficiencies (0 and 0.99). 
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Figure 6: Conversion efficiency map of HC using arctan function 

2.3.3 Parameter estimation and model validation 

The emission model is the focus of model validation process.  Due to limited transient engine test data, a set of 
cold-start FTP cycle test data of the target vehicle is used for parameter estimation and model validation. The 
parameter calibration is done in two-steps. The availability of engine-out emission data allows for a decoupled 
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parameter tuning of the engine thermal dynamics and after-treatment dynamics. First, using the engine-out 
emissions test data, parameters of the after- treatment dynamics are tuned to match the catalyst temperature, 
conversion efficiency, and tailpipe emission responses of the model to those of the cold-start FTP cycle test data. 
With the catalytic converter model tuned properly, the cold engine model is then tuned to match both engine-out and 
tailpipe emission responses with those of the cold-start FTP cycle data. 

Figure 7 shows the comparison of the emission model (solid lines) vs. the test data (dashed lines). The 
simulated tailpipe HC and CO results match the test data well, while the NOx prediction is significantly worse. The 
error mainly comes from the inaccurate engine-out NOx map, which uses linearly interpolated results for the low-
speed, high-throttle region due to the limited number of  test points in that region. 
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Figure 7: Comparison of model (solid) vs. test data (dashed) weighted emission responses for cold-start FTP urban 

cycle 

 
3 OPTIMAL SUPERVISORY CONTROL FOR FUEL ECONOMY AND EMISSIONS VIA DP 

As discussed in the introduction section, the near-optimality of the instantaneously optimal control solution may 
not hold. In the following, a Dynamic Programming optimization problem is formed and solved, which guarantees a 
globally optimal solution. 

 
3.1 DP Problem Formulation 

Inclusion of emission dynamics in the vehicle model introduces two additional dynamic states (Tcat, Tcool), in 
addition to the original dynamic state, SOC. Note that the vehicle speed is specified by the driving cycle and is no 
longer a state variable. The well-known curse of dimensionality makes it exponentially difficult to solve DP 
problems with an increasing number of states and/or control inputs [31]-[33]. Therefore, a simplified model is 
preferred, and further simplification of the model is necessary for reduced computational load. Since tailpipe 
emissions are dominated by the catalyst temperature dynamics and its conversion efficiency, we decided to simplify 
the coolant temperature model under the assumption that the warm-up and cool-down rates of the coolant 
temperature are linearly related to the converter brick temperature during a cold-start. Verification of this 
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assumption can be found from the literature [17], and the coolant temperature is approximated by a linear function 
of the brick temperature until it reaches the coolant circulation threshold temperature, Tcool,max. 
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Replacing the original coolant temperature dynamics (2) with (10) reduces the number of dynamic states to two, 
which results in a DP problem with manageable computation load. Table 2 summarizes the key variables of the DP 
problem, which consists of a discrete and a continuous control input and two dynamic states, whereas vehicle 
velocity (V) and power demand (Pdem) are specified by the FTP-72 driving cycle. 

Table 2: Trade-off Between Fuel Economy and HC 

 Variables Grid 
Stage (k) Time [0:1:final time] 

Engine Torque (Teng) [-1, 0:5:210] Control (u) Gear (Gr) [1 2 3 4] 
SOC [0.5:0.01:0.7] State (x) Catalyst Temperature (Tcat) [300:40:700, 900] 

 
Note that the engine off command is included in this DP problem by augmenting Teng grid with -1. Also, motor 
torque (Tm/g) is eliminated as a control variable by the drivability constraint defined as 

 
engdemgm TTT −=/

 (11) 

where Tdem is torque demand at the transmission input. 
The optimal control problem is defined as follows: 
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Although three types of major harmful emissions (HC, CO, and NOx) were modeled, the emission regulations put 
emphasis on eliminating cold-start HC for gasoline engines [34]. Therefore, only HC is included in the cost function 
to illustrate the design method of cold-start SPC in this study. Due to numerical difficulties of DP implementation 
for the charge sustaining constraint, 

 
initialfinal SOCSOC = , (14) 

it is replaced by the ΔSOC term in the cost function, and α must be adjusted to match the final SOC with the initial 
SOC. Penalty terms on frequent engine on/off and gear-shifts were also added to help separate engine on/off modes 
and gear selections from each other for the extraction process in Section IV. 
 
3.2 Results and Discussion 

The trade-off between fuel economy and HC is studied by varying coefficient β. Figure 8 shows that a trade-off 
exists between fuel economy and tailpipe HC, and a substantial tailpipe HC reduction can be achieved by a slight 
fuel economy loss, through a significantly shortened light-off time. 
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Figure 8: Pareto-curve of fuel economy vs. HC over various β 

 
Figure 9 shows that tailpipe HC is reduced by commanding extra load from the engine early on in the drive 

cycle, so that the TWC rapidly warms up during the first vehicle launch. Although this initially leads to increased 
fuel consumption, the extra power is stored in the battery, and the increased fuel consumption is later offset by the 
additional energy stored in the battery. Therefore, significant emission reduction can be obtained with minimal loss 
of fuel economy. 
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Figure 9: Simulation results of the DP solution at β = 200 for FTP urban cycle 

 



ASME Journal of Dynamic Systems, Measurement and Control, accepted, April 2010 (DS-09-1340). 

 10 

4 COLD-START SUPERVISORY POWERTRAIN CONTROLLER 
Despite guaranteed optimality of the DP solution, its solution cannot be directly implemented, and extraction of 

an implementable feedback controller is needed. The conventional extraction method used in [4] utilizes the single 
optimal solution, which does not provide enough information during the cold-start phase due to the short warm-up 
time. In addition, learning from transitions outside of the optimal path helps to alleviate the “cycle beating” nature 
of the learned behavior. Thus, a new extraction method is proposed for the design of a DP-based cold-start 
Supervisory Powertrain Controller (SPC). 
 
4.1 Comprehensive Extraction Method 

The idea of the new extraction method is to utilize all of the optimal control information found through DP, 
instead of single optimal trajectory. Suppose that DP stores the optimal control information in the form of uk

* = 
f(Tcat, SOC), where values of uk

* are stored for all state grid points at each time step k. Then, all uk
* elements can be 

grouped together for each Tcat grid point as shown in Figure 10. The rectangular box represents the optimal control 
law uk

* in a state and time space, where x1 is Tcat and x2 is SOC, and k indicates the time step. Each node in the box 
contains the optimal control information for the given state (x1,x2) and time step k, and the curve represent the 
optimal trajectory. The following algorithm converts uk

* into three useful forms of optimal control strategies, engine 
on/off (uon/off

*), gear-shift (uGear
*), and Power Split Ratio (PSR) (uPSR

*), where PSR is defined as. 

 
dem

eng

P
P

PSR ≡  (15) 

 

),( SOCTfu catk =
∗

Tcat

 
Figure 10: Extraction algorithm with Tcat sweep [33] 

 
Note that torque split ratio (TSR), which is defined as Teng/Tdem, equals PSR for the pre-transmission parallel 

HEV since the engine speed (Ne) equals transmission speed (Ni) when the clutch is engaged. Prior to the extraction 
algorithm, a designer must choose β that balances fuel economy and HC and obtain uk

* for the chosen β. In this 
study, β = 200 is chosen to see distinguished cold-start control strategy. 

 
The extraction algorithm is described below: 
a) Let time step k = 1 and obtain optimal control law uk

*. 
b) Obtain driving cycle information (Pdem, Twheel, V) at k = 1. 
c) If Twheel > 0, then go to d). Otherwise, skip d) through f). 
d) For all Tcat and SOC grid points, convert uk

* into two separate optimal control signals, gear selection (ugear
*) 

and engine torque (Teng
*). uon/off

* can be simply obtained by checking whether Teng
* = 0 or not. 

e) Find the optimal Tdem
* and Ni

* using ugear
*, and compute 

∗

∗
∗ =

dem

eng
PSR T

T
u  

f) Store all uPSR
*, uGear

*, and uon/off
* values into the new optimal control matrices to obtain ( )catdemiPSR TTNfu ,,=∗ , 
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( )catdemGear TPVfu ,,=∗ , ( )catwheeloffon TTVfu ,,/ =∗ , and ( )catdemioffon TTNfu ,,/ =∗ . 

g) Repeat a) through f) for all k. 
 
Two representative sets of optimal control matrices for cold and hot strategies, Tcat = 340K and 700K 

respectively, are selected and plotted in Figure 11-13. Extracted results for other temperatures are almost identical to 
either Tcat = 340K or Tcat = 700K. Figs. 11-13 indicate that all three control strategies, engine on/off, gear-shift, and 
PSR, should be adjusted during a cold-start for reduced emissions. Figure 11(a) shows that the optimal engine on/off 
decision can be made by the power demand at the wheel when the catalyst is hot. On the other hand, data points for 
the cold catalyst did not show a clear separation of engine on/off data. Instead, engine-on and off data are much 
more distinguishable when they are plotted on a transmission input speed (Ni) vs. torque demand at the transmission 
input (Tdem) plane as Figure 11(b) shows. Note that when the catalyst is cold the engine is not turned on until the 
transmission input speed (Ni) reaches 1500 rpm, even when high power is demanded by the driver. This is to make 
sure that the engine operates at higher speed when the engine turns on during cold-start. Figure 12 indicates that 
both cold and hot optimal shift strategies have clearly separable gear data on a V vs. Pdem plane, which allows use of 
a conventional shift-map. During cold-start, a late-shift strategy is necessary to promote faster catalyst warm-up by 
operating the engine at higher speeds. Note that EV mode shift-map was similarly extracted. Figure 13 shows that 
cold and hot optimal PSR data points can be approximated by two separate lines. The cold PSR line is located 
higher than the hot PSR line for increased Texh and faster catalyst warm-up. Note that PSR lines can be replaced by 
the optimal engine torque map, Teng

*= f(Ne,Tdem,Tcat), where Teng
* data are plotted on a Te vs. Tdem vs. Ne space to 

form optimal engine torque surfaces. This method includes Ne as an additional axis for better approximation of DP 
results. In summary, the extracted results show that the engine on/off and shift strategy play key roles in achieving 
optimal charge management and fast catalyst warm-up by determining the optimal engine speed, while PSR mainly 
focuses on optimizing engine operations for the given speed. Therefore, finding the optimal power-split strategy for 
pre-determined engine on/off and gear-shift strategies is not a proper approach to formulate the optimization 
problem. 

As noted earlier, all extracted results can be classified by either a cold or hot strategy depending on whether the 
catalyst temperature reached the light-off temperature or not. Relatively fast catalyst warm-up coupled with switch-
like performance of the catalyst is responsible for such results. These results allow us to design the DP-based cold-
start SPC with two control modes, Cold and Hot SPC, where each mode focuses on fuel economy and emissions 
respectively. Figure 14 shows the flowchart of the cold-start SPC with two modes. 

 

 
Figure 11: Flowchart of the cold-start SPC 
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Figure 12.  Extracted optimal engine on/off strategy at Tcat = 700K and Tcat = 340K. 
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Figure 13.  Extracted optimal shift strategy at Tcat = 700K and Tcat = 340K 
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Figure 14.  Extracted optimal PSR strategy at Tcat = 700K and Tcat = 340K 
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4.2 Hot SPC Algorithm 

The logic of the DP-based Hot SPC algorithm for a fully warmed-up catalyst is described as follows. 
 

If Pdem<Pon/off, 
Turn off the engine and select the gear using the Electric Vehicle (EV) shift-map 

/m g demP P=  

If V<20mph, then disengage the clutch for engine disconnect 
Else, engage the clutch. 

Else, 
Turn on the engine 
Select the gear using the engine-on mode shift-map and  find Tdem and Ni 
Find PSR from Tdem and Ni and compute 

demeng PPSRP ⋅=  

Compute M/G power:
/m g dem engP P P= −   

End 
 
Core design parameters of the above algorithm to achieve near-optimal performance are engine on/off threshold 

power (Pon/off), shift-map, and PSR map. The flow chart of the proposed SPC algorithm is illustrated in Figure 15 to 
help visualize the rules described above. In this algorithm, the optimal engine on/off, gear, and PSR commands are 
determined sequentially because the PSR decision requires Tdem and Ni, which can only be determined after gear 
selection is made, and shift-map selection depends on the engine on/off decision. Embedding DP information in this 
intuitive rule-based control structure provides implementable, near-optimal, and decoupled control logics of three 
sub-control modules: engine on/off, shift, and PSR. 
 

 
Figure 15: Flowchart of the DP-based SPC 

 
4.3 Cold SPC Algorithm 

Two Cold SPCs (DP-based and Map-based controller) are developed to evaluate performance improvement of 
the proposed design method. The proposed Map-based Cold SPC presents a benchmark with reasonable 
performance. 

1) DP-based Cold SPC: DP-based Cold SPC uses the identical algorithm as the Hot SPC except for the engine 
on/off algorithm. The engine on/off logic of the Cold SPC is triggered by the transmission input speed (Ni), instead 
of Pdem, as Figure 11(b) shows. In addition, the hot-maps (shift and PSR maps) are replaced by the cold-maps. 

2) Map-based Cold SPC: No standard emission control algorithm was found in the literature to use as a 
baseline, and a static (map-based) optimization method for emission control is proposed as a baseline Cold SPC. 
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Since tail-pipe emissions are significantly influenced by the catalytic converter temperature, the optimization 
problem must be carefully formulated for an effective emission reduction. The idea of the Map-based Cold SPC is 
to find the optimal throttle and shift strategy that minimizes engine-out HC and maximizes the exhaust temperature 
for fast catalyst warm-up based on transient engine maps. The static optimization problem is formulated and solved 
as follows. 

Objective: Find the throttle (φ) and gear (Gr) that maximizes the following value function. 

 
ratecoolHCinletcoolT

CF
rate

CF
inletcoolrateinlet

HCTCFTTCF
HCTTHCTf

inlet
⋅⋅−⋅=

⋅−=
)()(

),,(
γ

γ  (16) 

where Tinlet and HCrate are hot engine-maps, γ is a weighting factor for hydrocarbon, and CFi(Tcool) is the correction 
factor dependent on coolant temperature. Eq.(16) is introduced to maximize the exhaust gas temperature at the 
catalyst inlet (Tinlet) but minimize hydrocarbon rate (HCrate). 

In Figure 16, an example contour plot of the value function at Tcool = 400K and γ = 8000 illustrates how the 
optimal throttle and gear combination, which maximizes the value function, can be computed. γ is used to balance 
fast warm-up and lower HC by trial-and-error. The red dashed line represents the optimal throttle line that 
maximizes the value function at each engine speed (Ne), and this line changes as Tcool increases. Four x marks 
represent each gear selection on the optimal throttle line for a given vehicle speed. The optimal gear can be easily 
selected by evaluating value functions at these four points. These points will move along the optimal throttle line as 
the vehicle accelerates. 
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Figure 16: A sample contour plot of the value function f for Tcool = 400 K and γ = 8000. 

 
Off-line optimization algorithm: Since Tinlet and HCrate are functions of φ and Ne, the value function can be 

expressed as a function of φ, Ne, and Tcool, i.e., 

 ),,(),,( coolecoolrateinlet TNgTHCTf ϕ⇒  (17) 

The new value function g can then be used in the following off-line optimization algorithm. 
a) For a given vehicle speed (V), an engine speed vector (Ne) can be computed using the gear ratio vector (Gr). 
b) For a given Tcool and Ne vector, the optimal throttle vector (φopt) can be obtained from the pre-computed 

optimal throttle look-up table. 
c) For given φopt, Ne, and Tcool, the value function g(x) can then be evaluated and compared with each other to 

find the optimal Gr and φ for given V and Tcool. 
d) Repeat steps a) through c) for all V and Tcool to generate cold-start gear and throttle look-up tables, 

),(),,( coolcoldcoolcold TVTVGr ϕ . 
The overall structure of the algorithm described above is shown in Figure 17. 
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Figure 17: Block diagram of the optimization algorithm. (Solid line: vector, Dashed line: scalar) 

 
4.4 Results and Discussion 

For a fair comparison of DP-based and Map-based SPC, both controllers share the DP-based Hot SPC. Table 3 
indicates that the proposed cold-start SPC algorithm achieves near-optimal performance and better performance 
than the Map-based SPC. In particular, HC performance is significantly affected by different cold-start control 
strategies. Compared to DP, tailpipe HC of the DP-based SPC increased by only 4.0%, while tailpipe HC of the 
Map-based SPC increased by 17.5%. One of the major factors for this substantial HC increase is the cold-start 
engine-on timing. The Map-based optimization problem is inherently unable to determine when the engine should 
be turned on/off. Figure 18 also shows that the cold-start DP solutions are successfully extracted, and simulation 
responses of the DP-based SPC are very close to those of DP. 

Table 3: DP vs. Map-based vs. DP-based Cold SPC Results 

Controller DP (β =200) Map-based 
Cold SPC 

DP-based Cold 
SPC 

Normalized 
Fuel Consumption 0% +5.5% +5.3% 

Normalized 
Tailpipe HC 0% +17.5% +4.0% 

Normalized 
Performance 

Measure 
J=FC+200 HC 

0% +6.4% +5.2% 

 
The main benefits of the proposed cold-start SPC over the instantaneously optimal controller are 1) simple and 

intuitive control logic, 2) sequential and decoupled decisions of the control variables, and 3) easy modification of 
each control decision without significant loss of optimality. For instance, if a late shift is desired for improved 
drivability, a calibrator can modify only the shift-map without any modification of the optimal PSR line. However, 
this is difficult for the instantaneous approach to achieve because control decisions are coupled with each other. 
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Figure 18: DP vs. DP-based SPC cold-start simulation results. 

 
5 CONCLUSION 

This paper studies control of HEVs for simultaneous fuel economy and emission optimization. When emissions 
are considered, horizon-based design approaches have an advantage over instantaneous optimization approaches 
because tailpipe emissions heavily depend on the warming-up of the catalytic converter, a slow dynamics that 
depends on the behavior over a time horizon. The Dynamic Programming (DP) approach was selected to obtain the 
globally optimal solution, and the results showed that significant reductions in emissions can be achieved at a small 
loss of fuel economy. 

A comprehensive extraction technique is proposed to extract three control strategies (engine on/off, gear-shift, 
and power-split) from the DP solution over the entire state space. The extracted information indicates that these 
three control strategies should be adjusted during a cold-start to achieve fast catalyst warm-up with light cold-start 
engine-out HC emissions for parallel HEVs. The extracted information is then put together to form a DP-based 
SPC, and its results are compared to DP results and a Map-based algorithm. Simulation results show that DP-based 
SPC achieved substantial HC reduction over the Map-based algorithm. 
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