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1 Introduction

Much work has focused on the H. feedback control problem
since the landmark ‘DGKF’ state-space solution was presented by
Doyle et al. (1989). Most additional work has focused on the use
of single-degree-of-freedom controller design, where both stability
and performance requirements are satisfied by a single controller
block. In Yaesh and Shaked (1991), as well as several earlier work
(e.g., Soroka and Shaked. 1986; Grimble, 1988; Hara and Sugie,
1988), two-degree of freedom (2DOF) H.. controllers were pro-
posed. In their formulation, two control blocks are designed sep-
arately for better trade-off between stability and performance. The
2DOF formulations often increase the order of the controller as
they cannot, in general, be solved in the standard H.. framework.
For example, in the spectral factorization approach proposed by
Yaesh and Shaked (1991), the feedback block is first designed for
robust stability and noise requirement, the feedforward block is
then designed to improve tracking performance. The order of the
feedforward controller, however, equals to the sum of the order of
feedback controller and the augmented plant.

Preview control algorithms have been widely used to improve
control performance when future desired output or exogenous
disturbance is available. LQ-based preview control theory was first
developed in the 1970’s. In an early derivation (Tomizuka and
Whitney, 1975) the optimal preview control signal was found to
consist of a feedback and two preview terms. LQ-based preview
control algorithms have been applied to a wide range of applica-
tions with significant success (e.g.. Peng and Tomizuka, 1993).

H.-Preview control algorithms have gained increased interest
recently. In Moran et al. (1996), a modified game Riccati Equation
is used and the feedforward control is assumed unchanged from
the LQ-preview control formulation. In Ma and Peng (1996), a
two-player game theory approach is used. The signals of one of the
players is assumed to be previewable by the other player. In
Mianzo and Peng (1997), a Hamiltonian based method was devel-
oped to allow for the simultaneous design of feedback and preview
control laws. In this paper, this approach is generalized to a
framework suitable for continuous and discrete-time, LQ and H..,
and tracking and regulation problems.

The remainder of this paper is organized as follows: in Section
2, the continuous-time problem is formulated. The solution is then
given in Section 3. The discrete-time results are shown in Sections
4 and 5. Simulation results for the tracking control of an automo-
tive durability test rig are shown in Section 6. Finally, conclusions
are drawn in Section 7.
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A Unified Hamiltonian Approach
for LQ and H.. Preview Control
Algorithms

A framework for solving both the continuous and discrete-time LQ and H.. preview control
algorithms is presented in this paper. The tracking control of an automotive durability test
rig is used as an application example. Simulation results are presented 1o illustrate the
effectiveness of the preview control algorithms.

2 Continuous-Time Hamiltonian Formulation

The continuous linear time-invariant system studied in this
paper is assumed to be described by the following realization:

X =Ax+ Byw+ Byu + B,w,

z=Cux+Dyw+ Dpu+ Dyw, (1)

where x is the state vector, u is the control vector, z is the
performance vector, w is the non-previewable, and w, is the
previewable disturbance. w, can be either the desired trajectory or
previewable external disturbance. w includes model uncertainty,
measurement noise and other unknown disturbances. The cost
function to be minimized by the control vector is assumed to be

=1J§ 2"z + u"u — y*w'w]dt and the Hamiltonian function
is defined as *

H(x, A, 1) =4i[z7z + u"u — y*wTw]
+AAx + Biw + Bou + B,w,) (2)

Therefore, optimality [(9H/du) = 0] is

achieved when

0 and (0H/ow) =

u=I,(DL,C, + D1,D,A,D,C))x + II,(DL,D,,A,DT,D,,
+DLD)w, + II(DT,D,,A,BT + BD)A
Sgxt+gw, + g4 (3)
w =I1(D7,C, + DI,D:A,DT,C))x + IL(D],D,,A,D1,D,,
+ D1\D,)w, + IL(DT,D,ABT + BN)A

=gt gsw, T gd (4)
where A, = —(I + Dlrlez)il» M, =-+ DTanAzD.T.D.z +
D172D12)71- A, = ('Yz DlrlD!I)-l and II, = (')’2 -
DI\D,AD],D,, — D{\D,,)™". Substitute Egs. (3) and (4) into
(1), we have
i =Ax + B\II,(D],C, + D|\D,A,DT,C\)x
+ B,IL(D,C, + DT,D,,A,DT,C\)x
+ B\IL(DT,D,A\D :{ZDlp + D{lﬂlp)wp
+ B,I1,(DT,D,,A.D {lDlp + DxrzDi,.)Wp
+ B\II,(D],D,,A,BT + BT)A
+ B)II,(DT,D,ABT + BDA  (5)

Finally, using the fact —A” = 3H/dx, we have
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A=[vy'gig.— glg: — IC, — II;Dy,g, — ;D 58, 1%
+ [723536 — AT — 13Dy g6 — M3D 1285 — 3{83 - STB;
— giBTIA + [y*glgs — 1D gs.
— 3Dy, — HlDlp - glrgz]wp (6)
where II;, = C{ + (C{Du + CrDizﬂ-l?DﬂDn)HgD{l +

(CIDy, + C[D,,AID],D,)I1{DY,. The state and costate equation
can then be written in a standard Hamiltonian matrix form:

R AR

a=A + B II(D],C, + D{,D,;A,D},C))

~]

)

where

+ BZHl(DEZCl + D{ZDIIAZD lTlCL)
B= _BlHQ(D{IDIZAisg + BD - BIH,(DED“AZB,T + BD
X =7vgigs—glg, — II,C, — II,D,,g, — II;D g,
8=7y'glgs— AT — II,Dy,gs — D3¢,
— 818 — giB] — giB]
M= BIHZ(DTIDHAID{ZDU + DlrlDlp)
+ BZH](D:&D!]AZD{IDIP + D{lep) + Bp
N= 728535 — ;D85 — 3D g, — HaD:p —gig: ®)
After tedious but straightforward derivation, it was found that § =
T
- .
3 LQ and H. Continuous-Time Preview Control Algo-
rithm
Equation (7) shows a two point boundary value problem with
mixed boundary conditions, a difficult problem to solve. A com-
mon approach is to assume a solution, and then find the constraints
imposed by the optimal condition for this particular form. When
w, is previewable within a preview window, i.e., at time ¢, the

signal w,(7), 7 € [t, t + t,.] is known, one possible solution form
inspired by previous LQ results (Tomizuka and Whitney, 1975) is

A=Px+ f F(t, Dw,(t + 7)dt + F()w,(t + 1) (9)
0
Differentiating both sides of Eq. (9) with respect to time, we obtain
dP fa
IX+P ax — B Px + Fi(z, T)w,(t + 7)d7
[}
+ Fy()w,(t + tm)) + wa(t)]

lia d
+ J’ Fy(r, ) a wy(r + T)dT
o

Tig d
+ J i Fi(t, Dw,(t + 7)d7 + Fy()w, (¢ + 1)
(1]
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+ FZ(I)WP(I + rla) = Xx + 5(Px + J F,(I, T)WP
0

X (t + 7)d7 + Fy(t)w,(z + :m)) + Nw,(1) (10)

An extra assumption about the disturbance signal is made to
simplify Eq. (10):

dw,
- = Awwp(f)

dr

T=t+ 1,

(11)
Using Egq. (11), Eq. (10) can be rewritten as

apr

T + Pax — PBPx — PB I F\(t, I)wy(t + T)dt
0

— PBFy(f)w,(t + 1)) + PMw, (1) + F\(t, T)w,(t + 7)I5°

fla d
= f - Fi(t, Dw,(t + 7)d7
0

fta d

+ j @ F\(t, T)w,(r + 1)d7 + Fz(t)wp(z + 1)
0

+ Fy(A,w,(t + 1) = xx + 8Px

ta
+ SJ. F\(t, T)w,(t + 7)d7
0

+ 3F()w,(z + 1,) + Nw,(r) (12)

From the Principle of Optimality, by grouping similar terms in Eq.
(12), we have

dp
—  tPa—PBP—x—8P=0

P(1)=0 (13)

a 0
—PBF,(1, 7) — = Fi(t, ) + 5 F\(t,7) —8F,(t,7) =0

F\(r,0)=PM—N (14)

—PBF,(2) + F\(z, t;) + Fy(1) + F5(1)A, — 8F,(t) =0

Fy(t) =0 (15)

Fact 3.1 When z = C,x and the preview time is zero, Egs.
(13)~(15) solve a standard H.. feedback control problems.

Proof: It has been shown (Basar and Bernhard, 1995) that the
two-player game problem described in Egs. (1)~(4) is equivalent to
an H. problem. When z = C,x, D,, = D; = D,, = 0. From
Eq.(8),a = A, B=B.B] — y"B\Bl, x = —C[C,, 8 = —A,
M = B, and N = —C[D,,. Therefore, Eq. (13) becomes P +
PA — P(B,B} — ¥y°B,B))P + CIC, + AP = 0, which is the
standard game Riccati Equation, i.e., it solves a corresponding H .
feedback control problem.

Fact 3.2 When y — o and z = C,x, Egs. (13)<(15) solve a
LQ-preview regulation problem.

Proof: Wheny—o, A, =II, = 0. By assuming z = C,x, we
have D, =D, =D,,=0,A, =1II,=-1,g, =g, =g: =
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gs= 8= 0,g: = —B; and I, = C/. Therefore, Egs. (13)~«15)

reduce to
P+PA—PB,BIP+CIC,+AP=0

P(t) =0
a X a
—PB,BIF\(1, 7) — EFI(L )+ 5 Fia, )+ ATF(1,7)=0

F((1,0)=PM—N
—PB.BIF.(1) + Filt, 1,) + Fy(1) + Fy()A, + ATF5(1) = 0
Fy(t) =0

which are identical to the equations for LQ-preview regulation
control algorithms (Peng and Tomizuka, 1993).

The optimal preview control law consists of a feedback and two
preview terms. (i.e., u(r) = (g, + g:P)x(1) + g.w, (1) + gs[Jo*
Fi(7)w,(t + 7)d7 + Faw,(t + 1,,)]). From Facts 3.1 and 3.2, the
feedback term ‘is identical to either LQ or H.. feedback control.
Therefore, the stability and existence condition of a solution for the
proposed preview control law are exactly the same as standard LQ
or H. algorithms (Anderson and Moore, 1990; Zhou and Doyle,
1998). The readers are referred to those sources and the details are
omitted here. We now summarize the results of Sections 2 and 3
in the following theorem. .

Theorem 3.3 For a continuous linear time-invariant plant
shown in Eq. (1), if (i) (A, B,) is controllable and (C,, A) is
observable; (ii) (A, B;) is stabilizable; and (iii) H = [} e
dom(Ric), then an admissible H. preview control algorithm is
u(r) = (g + g:P)x(r) + gaw, () + gl Fu(nw,(r +
7)dt + F,w,(t + t,)]. The control.gain matrices P, F,, and F,
are governed by Egs. (13)~(15), and the matrices «, B, x. 8. M
and N are defined in Eq. (8), and g,, g, and g; are defined in Eq.
3).

The three assumptions stated in Theorem 3.3 are necessary to
ensure the existence of a stabilizing control, internal stability, and
the existence of a positive solution of the Riccati Equation. Inter-
ested readers are referred to Doyle et al. (1989) for details.

It is a common practice to implement the steady-state solutions
of Egs. (13)—(15), which need to be solved numerically. When w,
is a scalar, the solutions can be obtained as follows: The feedback
gain matrix P can be obtained from Algebraic Riccati Equation
solvers such as the MATLAB are( ) command (P = are(a, — B,
— X)), where the fact § = —a” is used. The preview gains are then
Fu(r) = e ™% (PM — N) and F, = (PB + & -
A D) e PETPU(PM — N), respectively.

4 Discrete-Time Hamiltonian Formulation
A general discrete linear time-invariant system is shown below

x(k + 1) = Ax(k) + Byw(k) + Byu(k) + Bpw,,(k)
z(k) = Cix(k) + Dyyw(k) + Dyulk) + Dlpwp(k) - (16)

where the variables x, u, w, w, and z are as defined in Section 2.
Although the equations are a lot cumbersome compared with their
continuous-time counterparts, the solution process is very similar.
Therefore, only important equations are listed in the following.
The cost function to be minimized is chosen to be J = 1 3}
[zz + u'u — y’w'w]. The Hamiltonian function is thus
Hix. A, k) = [z(k) z(k) + u(k) Tu(k) — y*wT(K)w(k)]

+ Atk + 1)"(Ax(k) + Byw(k) + Bu(k) + Bw,(k)) (17)

The optimal algorithms are then
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ulk) = HI(DT2C1 * D{:D11A2D1T1C1)x(k)
+ Hl(DT2D11A2DIT|D1p + Dlrzolp)wp(k) + HI(DTZDHAZBT

+ BDAK + 1) = gix(k) + gaw, (k) + gsA(k + 1) (18)
w(k) = TI(D],C, + DT,D A, DT,Cx(k)
+ IL(D],D,A\DLD,, + DT,D,)w,(k)
+I1,(B] + DT DA BDA(k+ 1)
= gox(k) + gsw,(k) + geAlk + 1) (19)

where A, = —(I + DI,D;)"", II, = —(I + D,D,;,A,D[\D,; +
DrzDu)_l» A, = (71 - D:—LDn)il and I, = (72 -
DID,ADLD,, — DID,)". From the fact A"(k) = (aH/
dx(k)), we have

A(k) =[glg, + II;C, + 13Dy, + D ypgy — v gligalx(k)

+[AT+ 11Dy g6 + II:D 1285 + gl g5
+giBI + giB] — vgigelA(k + 1) + [[I;D, g5
+ 1D y,g, + 1,0y, + 2182 — 'Y:gISs}Wp(k) (20)

where II, = C7 + (C'D,, + CI'D,A'DLD OIIIDT, +
(CID,; + C{D,,AID],D,))II{D],. The combined system dy-
namics can then be written as

xk+ 1] _[e —B x(k) M
[ AK) ] = [X 5 |[ak+1)]| T [N]R) @D
The matrices a, B, x, 8, M and N are almost identical to their
continuous-time counterparts defined in Eq. (8), except that x,
8 and N are defined with an extra minus sign (1.€., Xgwree =

— X comtinsous> €1C.) Similar to the continuous-time case, it can be
demonstrated that 8 = a’.

5 LQ and H. Discrete-Time Preview Control Algo-
rithm
The costate dynamics solution is assumed to be
Nia—1

A(k) = P()x(k) + 2, F,(k, n)w,(k + n)

=0
+ Fa(k)w,(k + N,) (22)

where N, is the number of preview steps. Similar to the
continuous-time case, the disturbance outside of the preview are
assumed to be described by p(k + j + 1) = A p(k + j).j = N,,.
The gain matrices of Eq. (22) were then found to be governed by
Plky=x+8[I+ Pk + 1)B] 'P(k + 1)«
P(N)=0 (23)

Fik,n)=8[I+Plk+ 1)B) 'Fi(k+1,n—1)

cs
" |
u
t"u
=l cy
— 1\&::

Fig. 1 Vehicle durability simulator schematic
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Fig. 2 Tracking results—full information versus preview (continuous-
time)

Fy(k,0)=8[I+ P(k+ 1)B] 'P(k+ DM + N
Fy(k) = 8[1+ P(k+ 1)B] '[F(k+ 1, N, — 1)

(24)

+ Fy(k+ 1)A,]

FA(lN}=0 (25)

Again, if we assume z = C,x,thena = A, 8 = B,B] — y °B,B], x =
CiC,,8 = A", M = B, and N = C|D,,. Therefore, Eq. (23) reduces
to the standard discrete-time game Riccati Equation (ie., P(k) =
CiC, + ATl + P(k + 1)(B,B] — yB,BN]"'P(k + 1)A). When y
— o, Egs. (23)25) again reduce to LQ-preview control results. The
. proofs are similar to those of Facts 3.1 and 3.2 and the details are
omitted here. We now summarize the results of Sections 4 and 5 in the
following theorem.

Theorem 5.1  For the discrete linear time-invariant plant shown
in Eq. (16), if (1) (A, B)) is controllable and (C,, A) is observable;
(i) (A, B,) is stabilizable; and (iii) H = [ .f] € dom(Ric), an
admissible H.. preview control law is u(k) = g,x(k) + g.w,(k) +
gl + Pk + 1)B] ' - {P(k + Dax(k) + Pk + 1) Mw (k) +

el Futk + 1, mwy(k + 1 + n) + Falk + Dw,(k+ 1 +
N.)]. The control gain matrices P, F,, and F, are governed by

25 .
. _FI
r ---- preview
_15
e 1! 3 =B
5 ! £ ;
Eos| NEE Y i
= oA Nifidi lind idl
& oy ML A M
2 o5l PR LA B
g0, SRRt A
&) FTI :
15l :E ¥ w u
21 %
%3 02 04 0.6 0.8 1

Time (seconds)

Fig. 3 Tracking error—full information versus preview (continuous-
time)
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Fig. 4 Iniput signal—full information versus preview (continuous-time)

Egs. (23)~(25). where matrices e, B, x, 6, M, and N are defined
in Eq. (8) (with modifications as noted in the remark below Eq.
(21)), and g,., g, and g, are defined in Eq. (18).

When w, is a scalar, the steady-state solutions of Eqgs. (23)~(25)
are obtained as follows: the feedback matrix P is first obtained
from the MATLAB command P = dlgr(a, B'7, x, I), where the
infinite-horizon version of Eq. (23) first needs to be rewritten as
P=x+ a'Pa— o'PBY[I + B"*PB"*] 'B"*Pa by using the
matrix inversion lemma (Ogata, 1995). By defining A, = 8(/ +
PB)"', the preview gains are F,(n) = A’(A.PM + N)and F, =
I —AA,'AY“(A_PM + N), respectively.

6 Application Example: Automotive Durability Test-
Rig

In this simulation study, the plant to be controlled is the auto-
motive durability test-rig shown in Fig. 1. The dynamics of this
test rig was described in a previous paper (Mianzo and Peng,
1997). The objective of the controller is to manipulate the actuator
displacement so that the wheel axle acceleration follows the ac-
celeration profile measured on test tracks as closely as possible. By
reproducing the axle acceleration repeatedly, the durability of the
vehicle suspension can be assessed more efficiently in a laboratory.
The plant dynamics was identified to be

587.6 3769 —603.1 2466.2
i=|—682.2 -2295 16844 ]x + [—5407.3]u

90.2 —1443 —1090.3 2850.8
= Ax + B.u
2
| Fl
15} e
Ir & s 3
Cosfi aiioii T
5. B v in ]
A HI 411
= LN S EE B A , I"I
FOSLW viingaly Wit A
g Wi R
= ot e = ;
Wov i
-1.5¢ " l\: z
-2 L 1 1 1
0 02 04 0.6 08 1
Time (seconds)

Fig. 5 Tracking error—full information versus preview (discrete-time)
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Fig. 6 Input signal—full information versus preview (discrete-time)

“y=[1 0 O0lx+12.0du= Cox + Dyt (26)

After analyzing several possible uncertainties (tire pressure,
actuator aging, etc.), it was determined that B, = [1 —2 1]”. For
tracking problems, w, = y, (the desired axle acceleration). As-
suming z = p(y — w,) where p is a weighting factor, we have
C,=[p00.,D,=0,Dy;=p*Dyp,D,,=—pandB, =
[0 0 O]". Therefore, A, =II, = —(I + DLD,,)) ', A, =11, =
Y~:v II; = er - CITDIZ(I + D{lez)ilD{z, & = -+
Di:D;) 'DCy, g2 = —(I + DDy;) 'DLD,,. g5 = —(I +
DT2D12)7|8; 8:=8s=0,and g = 'YizBT-

The infinite-horizon preview control law was implemented, and
the preview time was chosen to be 20 msec. It can be seen from
Figs. 2-4 (y = 1.5, p = 6, no plant uncertainty) that while both
control laws provide reasonable tracking results (Fig. 2), the pre-
view control action further reduces the tracking error compared
with the full-information (no-preview) case (Fig. 3). A phase-lead
contributed by the preview law is obvious from the plots. Another
important fact is that the performance improvement is achieved
under reduced control effort (Fig. 4), which suggests a more clever
use of control resource by the preview control law.

When we apply the discrete preview control described in Sec-
tion 5, similar improvement was obtained. In the discrete-time
simulations, we use a slightly longer preview time (30 msec),
which corresponds to a preview step size of 15 (sampling time =
2 ms). The discrete-time preview algorithm again achieves im-
proved tracking performance while using reduced control effort
(Figs. 5-6, ¥ = 1.5, p = 5, no plant uncertainty).

7 Conclusions

A Hamiltonian-based formulation is developed to solve both the
continuous and discrete-time LQ and H. preview control algorithms.
The disturbance signal is divided into previewable (e.g., desired
trajectory) and nonpreviewable (e.g., plant uncertainty) parts. When
the previewable disturbance is available in a finite preview window,
the preview control laws consist of the standard LQ or H.. feedback
control plus two preview terms. When future information is not
available, the control algorithms reduce to standard full information
LQ and H.. algorithms. Since the feedback control part is identical to
their respective LQ and H.. feedback-only designs, the preview con-
trol algorithm does not change their stability/robustness characteris-
tics. Both continuous and discrete-time simulation results show that
preview control laws improve tracking performance while using re-
duced control effort.
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