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This paper proposes a cost-effective method to estimate the vehicle sideslip angle on various 
frictional surfaces on banked roads. This paper demonstrates that the vehicle sideslip can be 
estimated by combining measurements of Global Positioning System (GPS), Inertial Measurement 
Unit (IMU), and a magnetometer in the Kalman filter framework. Among all the measurements, 
the magnetometer is the most vulnerable to exogenous disturbances.  To reject them, a stochastic 
filter is designed and integrated into the Kalman filter framework. Significant delays in GPS 
measurements are addressed by “measurement shifting”. The performance and accuracy of the 
proposed method are verified by comprehensive simulations and experiments.  
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1. INTRODUCTION   

The vehicle sideslip angle is a critical piece of 
information for electronic stability control (ESC) 
systems.  The National Highway Traffic Safety 
Administration (NHTSA) sets its estimation as a 
requirement for ESC. Since it is not directly measurable 
using today’s on-board sensors, researchers have 
proposed various methodologies for its estimation [1-7]. 
These methodologies can be categorized into two 
groups: dynamic model-based estimation and 
kinematics-based estimation. Dynamic model-based 
methods employ a vehicle dynamic model that describes 
how the estimated sideslip angle is affected by and 
related to vehicle input signals and parameters, such as 
steering angle and tire cornering stiffness. These 
model-based methods require accurate vehicle 
parameters and are reliable only for the linear range of 
the sideslip-lateral force relationship such as on high 
frictional surfaces. Kinematics-based methodologies 
process on-board sensor signals such as the inertial 
measurement unit (IMU) to estimate the sideslip angle. 
As they usually have a much wider range of validity, 
sideslip angles can be estimated regardless of surface 
friction levels. However, the accuracy of these methods 
can be drastically deteriorated by unknown sensor bias 
or road disturbances such as gravity on a banked road.  

Bevly et al. proposed a method utilizing a single 
antenna GPS along with an IMU for sideslip angle 
estimation [8-9]. Since the vehicle heading angle is not 
observable with a single antenna GPS, this method 
relies on IMU measurement integration to calculate the 

heading angle. Accordingly, it is vulnerable to unknown 
sensor bias. In addition, this method does not effectively 
address out-of-plane vehicle motion such as roll and 
pitch. Yoon and Peng proposed a new method using two 
single antenna GPS receivers [10]. This method uses the 
kinematic relationship between the velocities of two 
GPS receivers; hence vehicle heading and sideslip 
angles are calculated directly. However, this method 
works only for in-plane vehicle motion. Ryu et al. 
proposed a method using a dual-antenna GPS receiver 
[11-12]. In this method, the vehicle heading angle is 
directly measured by detecting the phase shift of carrier 
waves arriving at two different antennae at known 
locations on the vehicle. Unlike the aforementioned 
methodologies, this method can provide accurate 
sideslip estimations on various frictional surfaces, even 
on banked roads. However, it is too expensive to be 
used in production vehicles today[13].  

This paper proposes a cost-effective method to 
estimate the vehicle sideslip angle for a wide range of 
road surface frictions and bank angles. This method 
combines measurements of the velocity from a single 
antenna GPS, the heading from a magnetometer and 
angle-rate/acceleration from an IMU. Even though a 
magnetometer can provide direct measurement of 
vehicle yaw and roll angles, using it for a ground 
vehicle application is not common due to its high 
susceptibility to disturbances [14]. This paper 
introduces a stochastic filter to reject large errors in a 
magnetometer (hereinafter MAG) measurement. This 
new filter is integrated into a Kalman filter framework. 
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We also present a method addressing the significant 
delays in GPS measurements. This is important because 
low-cost GPS receivers are known to have significant 
delays partly due to their low update rates (< 5 
Hz)[11-12]. A comprehensive simulation study is 
conducted using the commercial software CarSimTM to 
prove the feasibility of the new method. The method is 
verified by experiments on snow/ice surfaces under 
several different maneuvers. 

 
2. METHODS 

Figure 1 shows the schematic overview of two 
Kalman filters to estimate the vehicle sideslip angle. 
The Heading Kalman Filter calculates yaw/roll angles 
from MAG and IMU measurements. The sideslip angle 
is then calculated through the Sideslip Kalman Filter by 
combining GPS and IMU measurements.  Given the 
system, 
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Fig. 1 Schematic diagram of the two Kalman filters 

 
the Kalman filter provides state estimation through 
Equations (2)-(6) [15].  
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covariance. This state estimate is optimal when the plant 
and measurement noise are Gaussian white. Equations 
(2) and (3) produce “time updates” whereas (5) and (6) 
produce the “measurement updates”. 
2.1 Heading Kalman Filter 
The magnetic field measurements in the vehicle-fixed 
frame are rotations of the Earth magnetic field which is 
the constant vector pointing to the magnetic North in the 
Earth-fixed frame. Equation (7) shows their relationship 
in the ZYX Euler angle definitions. To determine the 
attitude of a three-dimensional object, at least two 
independent directional vectors are required. However, 
since MAG can provide only one vector, the solution of 
Equation (7) would have redundant answers. This 

problem is resolved by assuming zero pitch (θ ) angle. 
The negligible pitch angle assumption converts 
Equation (7) into Equation (8), which is used in our 
study. 
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where 
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For the time update equations of the Heading 
Kalman Filter, the kinematics for the yaw/roll rates and 
angles are presented as 
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where 
tmeasuremenraterollyawinbiasbb pr /][ =  

tmeasuremenraterollyawpr mm /][ =  

noisewhiteGaussianthenoise =  

The state vector does not contain the pitch angle due to 
the zero-pitch assumption. Since Equation (8) is 
nonlinear, the extended Kalman filter technique is used 
and the Jacobian of Equation (8) with respect to the 
state is used as Hk in Equation (4).  
2.2 Stochastic properties of the MAG disturbance  

 
Fig. 2 Correlation of magnetic field norm error and heading 

angle error 
Since the Earth’s magnetic field is weak (≈ 60 µT), 

an adjacent vehicle can induce a significant disturbance 
in the MAG measurements [14, 16-17]. Figure 2(a) is 
typical highway test data. The yaw angle is calculated 
purely from MAG measurements. The yaw angle error 
observed near the 20 second mark was induced by a 
passing vehicle. It is worth noting that the norm of the 
MAG measurement deviates from unity when a 
disturbance occurs. Absolute values of the heading error 
and the deviation of the MAG measurement norm from 
unity for 8 highway data sets are plotted in Figure 2(b). 
Since the correlation coefficient is 0.9, deviation of the 
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magnetic field norm from unity can be an effective 
indicator of a disturbance in MAG measurements. 

When disturbances occur, measurement errors (vk) in 
Equation (1) are not Gaussian white. As this violates 
one critical assumption of the Kalman filter, derivation 
of the Kalman filter is revisited with a new stochastic 
property of disturbed measurements.  

Let w be the disturbance present in the magnetic 
field measurement. The absolute value of w is assumed 
to be upper-bounded by bo. Since no prior knowledge of 
w is available, its probability density function (PDF) has 
the Uniform distribution bounded by bo. 

Let two random variables x and z be related via a 
joint probability density function ),(, zxf ZX

. For any 

given z (measurement), the optimal estimation of x 
minimizing ])ˆ[( 2xx −ε  is  

( ) dx
zf
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This is known as the minimum mean square error 
(MMSE) estimation. For the Bivariate Normal 
distribution, x̂ is expressed as a linear function of z. 
However, a disturbed measurement (z) has the Uniform 
distribution, whereas the random variable x (state to be 
estimated) has the Normal distribution as 

1 2

(0, )

( , )

x
x N

z cx U b b

µ σ= +

= + −
             (11) 

where 
1 2

, , , ,
x

c b bµ σ  are constants characterizing the 

probability distributions. Then the MMSE estimation is 

( )

( )
( )

( )
dx

dse

xe
x c

bz

c
bz

c
bz

c
bz

s

x

x

x

∫

∫

+

−
+

−





















 −−





















 −−





















=
1

2

1

2

2

2

2

1

2

1

ˆ

σ
µ

σ
µ

     (12)    

which is non-linear. A linear relationship is preferred to 
be compatible with the Kalman filter framework. For 
this purpose, the Truncated Normal distribution 
substitutes for the Uniform distribution because it is a 
close approximation of the Uniform distribution when 
the standard deviation is large enough compared to the 
truncated bound as seen in Figure 3.  

 
Fig. 3 Truncated Normal distribution under three different 

standard deviations 
If random variable z is truncated by zb around ��

���
� ,the 

PDF, MMSE, and variance are presented in Table 1. In 
Equation (15), the term inside the dash-lined box is a 

modification factor (denoted as m).  
Table 1 Joint Normal and Truncated Normal distribution 
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2.3 Integration on the Kalman filter framework 
Equations (14)-(15) are identical to MMSE and variance 
of Bivariate Normal distribution whose standard 
deviations are ��√�  and �
√� , respectively. This 
suggests that when the jth component of a measurement 
vector (standard deviation of ��) is disturbed, it can be 
treated as the Gaussian white noise whose standard 
deviation is �����. Therefore, )( T

kkvvε of Equation (4) 

is expressed as 
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where each measurement error component is assumed to 
be uncorrelated with each other. R is the measurement 
error covariance matrix and M is the modification 
matrix. When measurements are not disturbed, M would 
be the identity matrix, which is equivalent to the 
Kalman filter. Otherwise, the corresponding 
components of M are calculated by Equation (15). 
2.4 Sideslip Kalman filter 

This Kalman filter combines the longitudinal/lateral 
accelerations from an IMU, the velocities from a single 
GPS receiver, and yaw/roll angles from the Heading 
Kalman Filter. In the ISO coordinate system, the 
kinematics relating accelerations and velocities of an 
IMU are 
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Since yaw rate (ψ& ) is known by subtracting the yaw 

rate bias (calculated from the heading Kalman filter) 
from yaw rate measurements, Equation (17) is 
rearranged to form the time update equation as 
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Velocities from a GPS receiver are converted into 
longitudinal, lateral, and vertical velocities via  
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ψ andφ are provided by the heading Kalman filter. 

When GPS updates are available, measurement update 
equations are 
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2.5 GPS delay handling 
 

 
Fig. 4 Discrete Kalman filter framework to handle delays 

 
][ GPSGPS VU in Equation (20) have significant delays 

inherited from the property of a low-cost GPS[10-12]. A 
method similar to what Larsen proposed [18] is 
implemented. Figure 4 shows a discrete time Kalman 
filter framework to address delays. From time step s to k, 
state estimation and its covariance are evolved only 
through the time update because GPS measurements are 
unavailable. At time step k, GPS measurement is 

available (
k

z ) but it represents a value of time s due to 

the delay. Accordingly
k

z is shifted back to time s and 

merged with state estimation of 
sx̂ to yield the 

measurement updated state of new
sx̂ . Then the new state 

at k ( new
kx̂ ) is obtained through time update fromnew

sx̂ . 
 
3. RESULTS 
3.1 Simulations 

A comprehensive simulation was run with CarsimTM. 
Four types of maneuvers (single lane change, double 
lane change, slalom, and J-turn) are combined with two 
different surface friction levels (asphalt and ice) and two 
road types (flat and banked). Figure 5 shows the 
simulation layout. Black lines represent asphalt and 
cyan blue lines are for ice. Dotted lines mean banked 
roads where solid lines are flat surfaces. Table 2 
summarizes the simulated errors of all sensors. In 
addition to injecting white noise, the IMU had biases, 
the GPS had a delay, and the magnetometer had random 
disturbances.  

 
Fig. 5 The simulation layout 

 
Table 2 Summary of simulated error 

Sensor Simulated Error 

IMU 

- Standard deviation of white noise  
 0.01 m/s2  for accelerations 
 0.1 deg/sec for gyros 

- Injected bias  
 0.5 m/s2 for accelerations  
 2 deg/sec for gyros 

GPS 

- Standard deviation of white noise 
   0.01 m/s 
- Delay 
   400 ms 

Magnetometer 

- Standard deviation of white noise 
   0.02 
- Disturbances 
   12 occurrences at random timing with 
   random magnitude in [0.5,2.0] 

Figure 6 shows the vehicle sideslip, yaw, and roll 
angle estimation of the simulation. Blue dotted lines are 
estimations and red solid lines are references as true 
values. Several peaks of MAG norm in Figure 6(a) 
indicate the occurrences of magnetic disturbances. Even 
with magnetic disturbances, the vehicle sideslip 
estimation stays close to the true values throughout the 
whole time (Figure 6(b)). This suggests the magnetic 
the disturbance rejection logic effectively functions. In 
Figure 6(b), four areas are identified as A: flat asphalt, 
B: banked asphalt, C: flat ice, and D: banked ice 
surfaces. Accurate sideslip estimations in area A and C 
prove the robustness of the proposed method to different 
surface friction levels. Additionally, desirable 
performances of area B and D demonstrate that the 
method works even on baked roads. This is possible 
because vehicle roll angles are accurately estimated by 
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the method (Figure 6(d)). The dotted green line in 
Figure 6(c) is the yaw angle estimation without the 
magnetic disturbance rejecting modification. Significant 
errors of dotted green lines suggest that MAG 
disturbance is effectively rejected by the method. 

 

 
Fig. 6 Vehicle sideslip, yaw and roll angle estimations with 

the presence of random magnetic disturbances 
 

3.2 Experimental Verifications 
A GM Silverado truck is used for experimental 

verification. Four types of maneuvers (single lane 
change, double lane change, slalom, and J-turn) were 
run on packed snow and ice surfaces at the TRW Winter 
Test Track in Raco, Michigan. Two different vehicle 
speeds representing fast (90 KPH on snow, 50 KPH on 
ice) and slow (60 KPH on snow, 30 KPH on ice) were 
executed. Each driving scenario had 5 runs; a total of 70 
data sets were collected. An Xsens MTi magnetometer 
and an IMU from a production ESC unit (TRW) were 
used. An Oxford RT2500, with a single GPS receiver, 
was installed for the reference signal. The vehicle with 
installed equipment is shown in Figure 7.    

 
Fig. 7 Setup on the experimental vehicle 

 

The experimental data processing uses GPS signals 
from the RT2500. To mimic a low-cost GPS receiver 
signal, a 400 ms delay is injected and the data are 

re-sampled at 5 Hz. Figure 8 shows typical traces of 
experimental data. As seen in the figure, sideslip 
estimation stays close to the reference signal. J-Turn 
sideslip angle estimation shows deviation at the end of 
the run because that is when the vehicle slows down 
significantly. Errors in sideslip estimation due to GPS 
noise grows as a vehicle’s speed reduces[8]. The 
sideslip RMS error from 70 collected data is 1.3o.  

 
Fig. 8 Experimental sideslip estimation performance (single 

lane change, double lane change, slalom and J-turn) 
 

As the test track environments were MAG-noise free, 
on-tract data process does not verify MAG disturbance 
rejection logic. To verify MAG disturbance rejecting 
capability, randomly generated MAG disturbances 
(norm magnitude of [0.05, 1] at 20% occurrence rate) 
are injected into the on-tract data. The statistical 
property of the disturbance is chosen based upon actual 
highway data. With the disturbances, the sideslip RMS 
error from 70 data sets becomes 1.98o, which is 0.68o 
worse than the MAG disturbance-free data. For further 
statistical analysis on MAG disturbance rejection logic, 
a representative data of each maneuver is selected and 
the data is processed twenty times with randomly 
generated MAG disturbances of various magnitudes and 
frequencies. The results are shown in Figure 9. Red 
lines are the reference signals, blue lines are estimations, 
and green lines are estimation without MAG 
disturbance rejection modification (M in Equation (16)). 
As seen in the figure, the proposed method successfully 
rejects MAG disturbances. The RMS error from 80 data 
sets (4 selected data × 20 runs each) is 1.28o with a 
MAG disturbance of [0.05, 1] at 20% occurrence rate. 
Performance is similar with MAG disturbance of [1,2] 
at 20 % occurrence rate. However, a 40% occurrence 
rate has the performance value of 2.23o.  

Figure 10 shows traces of roll angle estimation of the 
method; the estimation follows the reference signal 
accurately. The RMS errors from 70 data sets are 
calculated, and without the MAG disturbances, it is 
0.81o. With the simulated MAG disturbances, it slightly 
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increases to 0.84o.  

 

 
Fig. 9 Experimental sideslip estimation performance with 

randomly generated MAG disturbances (20 runs each) 
 

  
Fig. 10 Experimental roll angle estimation performance 

 
5. CONCLUSION 

This paper shows that the vehicle sideslip angle can 
be estimated by combining measurements from a GPS, 
a magnetometer, and an IMU. The Kalman filter is 
employed for sensor fusion. To reject magnetic field 
disturbances, a new stochastic filter is designed based 
on the joint Normal and Truncated Normal distribution 
and fitted into the Kalman filter framework. 

Comprehensive simulations show that the sideslip 
estimation stays accurate regardless of surface friction 
type, road bank, and magnetic field disturbances. 
Experimental results verify that the estimation 
performance is acceptable for various maneuvers. The 
RMS error is 1.3o, but it increases to 2.23o with 
significant amount of MAG disturbances. Disturbance 
occurrence rates have more impact on the performance 
than disturbance magnitudes. Experimental data also 
show that the proposed method can estimate vehicle roll 
angles accurately.  
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