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This paper proposes a cost-effective method

tonast the vehicle sideslip angle on various

frictional surfaces on banked roads. This paper atestnates that the vehicle sideslip can be
estimated by combining measurements of Global Baogig System (GPS), Inertial Measurement
Unit (IMU), and a magnetometer in the Kalman filfemmework. Among all the measurements,

the magnetometer is the most vulnerable to exogedsturbances.

To reject them, a stochastic

filter is designed and integrated into the Kalmdterf framework. Significant delays in GPS
measurements are addressed by “measurement shiffihg performance and accuracy of the
proposed method are verified by comprehensive sitianls and experiments.

Topics / Sideslip estimation, Kalman Filter, Magmaeter, GPS, Stochastic Filter

1. INTRODUCTION

The vehicle sideslip angle is a critical piece of
information for electronic stability control (ESC)
systems. The National Highway Traffic Safety
Administration (NHTSA) sets its estimation as a
requirement for ESC. Since it is not directly meabie
using today's on-board sensors,
proposed various methodologies for its estimatib][
These methodologies can be categorized into two
groups: dynamic model-based estimation and
kinematics-based estimation. Dynamic model-based
methods employ a vehicle dynamic model that dessrib
how the estimated sideslip angle is affected by and
related to vehicle input signals and parametersh s1s
steering angle and tire cornering stiffness. These
model-based methods require accurate vehicle
parameters and are reliable only for the lineageaof
the sideslip-lateral force relationship such ashigh
frictional surfaces. Kinematics-based methodologies
process on-board sensor signals such as the Inertia
measurement unit (IMU) to estimate the sideslipleng
As they usually have a much wider range of validity
sideslip angles can be estimated regardless oacurf
friction levels. However, the accuracy of these hods
can be drastically deteriorated by unknown sensas b
or road disturbances such as gravity on a banikadl ro

Bevly et al. proposed a method utilizing a single
antenna GPS along with an IMU for sideslip angle
estimation [8-9]. Since the vehicle heading anglaat
observable with a single antenna GPS, this method
relies on IMU measurement integration to calcuthe

heading angle. Accordingly, it is vulnerable to nakwn
sensor bias. In addition, this method does notttfely
address out-of-plane vehicle motion such as roll an
pitch. Yoon and Peng proposed a new method usiag tw
single antenna GPS receivers [10]. This method thees
kinematic relationship between the velocities ob tw

researchers have GPS receivers; hence vehicle heading and sideslip

angles are calculated directly. However, this metho
works only for in-plane vehicle motion. Ryu et al.
proposed a method using a dual-antenna GPS receiver
[11-12]. In this method, the vehicle heading angle
directly measured by detecting the phase shifaofier
waves arriving at two different antennae at known
locations on the vehicle. Unlike the aforementioned
methodologies, this method can provide accurate
sideslip estimations on various frictional surfacegen

on banked roadsHowever, it is too expensive to be
used in production vehicles today[13].

This paper proposes a cost-effective method to
estimate the vehicle sideslip angle for a wide eanf
road surface frictions and bank angles. This method
combines measurements of the velocity from a single
antenna GPS, the heading from a magnetometer and
angle-rate/acceleration from an IMU. Even though a
magnetometer can provide direct measurement of
vehicle yaw and roll angles, using it for a ground
vehicle application is not common due to its high
susceptibility to disturbances [14]. This paper
introduces a stochastic filter to reject large errim a
magnetometer (hereinafter MAG) measurement. This
new filter is integrated into a Kalman filter framerk.
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We also present a method addressing the significant problem is resolved by assuming zero pit¢h) (@ngle.
delays in GPS measurements. This is important lsecau The negligible pitch angle assumption converts

low-cost GPS receivers are known to have signitican Equation (7) into Equation (8), which is used inr ou
delays partly due to their low update rates (< 5 study.

Hz)[11-12]. A comprehensive simulation study is

conducted using the commercial software CafSiro cogycost sing cosf -sin@
prove the feasibility of the new method. The metiwd m ) M
verified by experiments on snow/ice surfaces under _| TSingcosp cogycosp cogsing | ¢
several different maneuvers. m, |=| +cogysindsing  +singsindsing mY
z
singsing —-cogysing
2.METHODS +cogysinfcosp +sinysinécosp cosgcosp
Figure 1 shows the schematic overview of two @)
Kalman filters to estimate the vehicle sideslip lang where
The Heading Kalman Filter calculates yayv/roll_ asgle [m, m, m]" = magnetic fid ina body - fixed frame
from MAG and IMU measurements. The sideslip angle T o )
. . . . [M, M, M,]" = magnetic field in theEarth- fixed frame
is then calculated through the Sideslip KalmareFitty o _ iich roll
combining GPS and IMU measurements. Given the lv g = lyaw pitch roll]
system, M W
— m, = co
% = FaXe t Gy ¥ A Wiy (1) m, = —M x Sing cosp+ M, sing (8)
z = H X +Vv, m, = M, singsing+ M, cosgp
acc, acg, GPS For the time update equations of the Heading
Vo rat Vaw J' l l Kalman Filter, the kinematics for the yaw/roll rat@nd
avras — o angles are presented as
eading ideslip _
Roll rat 0 -10 0 10
2] Kalman Roll Kalman gj 00 0 0 Iéj 00 9)
MAG Filter ]vaw ratebiag Filter e e 'n | 4 noise
l 1 l | |0 0 0 -1| @| |0 1|p,
b,] [0 0 0 0]b 0

Ve Vy Sideslip
Fig. 1 Schematic diagram of the two Kalman filters "¢

[b. b,] = biasin yaw/roll rate measuremert
the Kalman filter provides state estimation through [t Pul = yaw/roll rate measuremert
Equations (2)-(6) [15]. noise = the Gaussian white noise
o — oF 2) The state vector does not contain the pitch angéetd
X =R X+ Gl . - . . .
o .1 . T the zero-pitch assumption. Since Equation (8) is
R =FuRaFRa +/\k-15(Wk-1Wk—1)/\k-1 @) nonlinear, the extended Kalman filter techniqueised
K, :pk—HkT[Hkpk—HkT + E(vkv[)]_l (4) and the Jacobian of Equation (8) with respect ® th
ot _ o o state is used &g in Equation (4).
% =% +K, (2 -H.%) (5)

2.2 Stochastic properties of the MAG disturbance
Pk+ — (I _ KkH k)Pk— (6) : : \a; thlw D‘aa : : . (b) Correlation Plot

where x OR™ is the state, X / % are

wauangle Edcg]

predicted/corrected state estimates, OR"™ is the

|,x1

input, w,_, OR*" is the plant noiseyv, OR™is the
measurement noiseg() denotes the expected value

g
5
=
=
g
=
z
3

magnetic field norm

and P /P are predicted/corrected state error e e L ‘ £
covariance. This state estimate is optimal wherptaet i e

] : ! ] Fig. 2 Correlatlon of magnetic field norm error drehding
and measurement noise are Gaussian white. Equations angle error
(2) and (3) produce “time updates” whereas (5) @)d Since the Earth’s magnetic field is weak@0 uT),
produce the “measurement updates”. an adjacent vehicle can induce a significant distoce
2.1 Heading Kalman Filter in the MAG measurements [14, 16-17]. Figure 2(a) is
The magnetic field measurements in the vehicledfixe typical highway test data. The yaw angle is cateda
frame are rotations of the Earth magnetic field alhis purely from MAG measurements. The yaw angle error
the constant vector pointing to the magnetic Nattthe observed near the 20 second mark was induced by a

Earth-fixed frame. Equation (7) shows their relasioip passing vehicle. It is worth noting that the norfrthe
in the ZYX Euler angle definitions. To determineeth  MAG measurement deviates from unity when a
attitude of a three-dimensional object, at leasb tw disturbance occurs. Absolute values of the heaelingyy
independent directional vectors are requidddwever, and the deviation of the MAG measurement norm from
since MAG can provide only one vector, the solutidn  unity for 8 highway data sets are plotted in FigR(e).
Equation (7) would have redundant answers. This Since the correlation coefficient is 0.9, deviatimfnthe



magnetic field norm from unity can be an effective
indicator of a disturbance in MAG measurements.

When disturbances occur, measurement errysnv
Equation (1) are not Gaussian white. As this vedat
one critical assumption of the Kalman filter, datien
of the Kalman filter is revisited with a new stoshia
property of disturbed measurements.

Let w be the disturbance present in the magnetic
field measuremeniThe absolute value af is assumed
to be upper-bounded . Since no prior knowledge of
w is available, its probability density function (PPhas
the Uniform distribution bounded .

Let two random variableg andz be related via a
joint probability density functiorfxvz(x,z). For any

given z (measurement), the optimal estimation >of

minimizing g[(x—X)?] is

Txa(62)g, (10)
f,(2)

This is known as the minimum mean square error

(MMSE) estimation. For the Bivariate Normal

distribution, Xis expressed as a linear function of

However, a disturbed measuremez)thas the Uniform

distribution, whereas the random variakléstate to be

estimated) has the Normal distribution as

x=u +N(0,0)
z=cx+U(-b,b,)

)2:£(x|z)zjx

(11)

where y ,c,0,b ,b, are constants characterizing the
probability distributions. Then the MMSE estimatisn

L lem)/ Xe[*%(%ﬂ

X= 2
(z-e2)/ (z+n)/ {%[%U
I(Z_b%e ds
which is non-linear. A linear relationship is pneé to
be compatible with the Kalman filter framework. For
this purpose, the Truncated Normal distribution
substitutes for the Uniform distribution becausésita
close approximation of the Uniform distribution whe
the standard deviation is large enough compardteo
truncated bound as seen in Figure 3.

dx (12)

0.15

......... std=bound
=+=+="std=3*bound
std=10*bound

o
=
1

Probability Density

[

0 L
S 4 pound 2 L 0 1 2 poypd 4 S

Random Variable

Fig. 3 Truncated Normal distribution under threfedent
standard deviations

If random variable is truncated by, around ;’szx ,the

PDF, MMSE, and variance are presented in Tabla 1. |
Equation (15), the term inside the dash-lined tai
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modification factor (denoted &9).
Table 1 Joint Normal and Truncated Normal distiidout

PDF fxz2(%2)

tatanle) ) e
exp-————||—| 20— | — |+ —| || f |z— <z
2(1_p) UX UX O-Z O-Z IOO-X
0 ,Otherwise
(13
where A= L

20, 1-p?| @ — 2 |
og1-p° oN1-p°

p="2x and &(x) = " @(t)et

1 5°
—, gx)=——e? ,
0,0, %) N2

MMSE x=¢g(x|2)

0%x7 (14
O-Z
Variance J:I: (z-2f f,, (x,2)dxdz
oo 1 xd)) (15
ot o s T
where
7= % , and 2= Ie g

a, 1—/72 POy

2.3 Integration on the Kalman filter framework
Equations (14)-(15) are identical to MMSE and vacia
of Bivariate Normal distribution whose standard
deviations ares,n/m ando,v/m, respectively. This
suggests that when th® gomponent of a measurement
vector (standard deviation af;) is disturbed, it can be
treated as the Gaussian white noise whose standard
deviation is g;,/m;. Thereforeg(v,v, ) of Equation (4)
is expressed as

o? 1

- ' (16)

EADE =RM

a; m
7 1
where each measurement error component is asswmed t
be uncorrelated with each oth&.is the measurement
error covariance matrix and/ is the modification
matrix. When measurements are not disturidayould
be the identity matrix, which is equivalent to the
Kalman filter.  Otherwise, the corresponding
components o are calculated by Equation (15).
2.4 Sidedlip Kalman filter
This Kalman filter combines the longitudinal/latera
accelerations from an IMU, the velocities from ags
GPS receiver, and yaw/roll angles from the Heading
Kalman Filter. In the 1SO coordinate system, the
kinematics relating accelerations and velocitiesaof
IMU are
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B :u’ —yN +b +w, ' (17) merged with state estimation of_ to yield the
a,, =V +yJ +b +gsing+w, measurement updated state . Then the new state
where o , at k (k") is obtained through time update fr&ff'.
[a,x @&,,] =longitudiral /lateral acceleration measuements s
[U V] =longitudinal /lateral velocities 3. RESULTS
(b, b,] =biases in[a,, a,,] 3.1 Simulations
gsing = gravitational compoment by roll A comprehensive simulation was run with CarSfm
[w, w] =the Gaussian white noise Four types of maneuvers (single lane change, double

lane change, slalom, and J-turn) are combined twith

; ) ) different surface friction levels (asphalt and ie@jl two
rate bias (calculated from the heading Kalmantjilte 554 types (flat and banked). Figure 5 shows the
from yaw rate measurements, Equation (17) is gimylation layout. Black lines represent asphalt an

Since yaw rate (/) is known by subtracting the yaw

rearranged to form the time update equation as cyan blue lines are for ice. Dotted lines mean bdnk
Up o -1¢ 0jul 10 roads where solid lines are flat surfaces. Table 2
: (18) ) .
by_| 0 0 0 0}b 0 0{ s }noise summarizes the simulated errors of all sensors. In
Vij-¢ 0 0 -1}V| 0 1]a, ~gsing addition to injecting white noise, the IMU had haas
b, 0 0 0 OJb] |00 the GPS had a delay, and the magnetometer hadmando

Velocities from a GPS receiver are converted into disturbances.
longitudinal, lateral, and vertical velocities via

yers cogy siny 0 T Vvex
VS | =| —cospsing cospcosy  sing || VS
VA singsing  —singcosy cosp| VS,
(19)
where '
[VEPS V2P v EPS] = vel ocities of aGPSreceiverintheEarth— fixed frame o—o e ° e o e o
[U %7 v V] = longitudinal /lateral /vertical velocities of Fig. 5 The simulation layout
a GPSreceiver inthevehicle — fixed frame
i and¢ are provided by the heading Kalman filter. Table 2 Summary of simulated error
When GPS updates are available, measurement update _Sensor Simulated Error
equations are - Standar d deviation of white noise
U 0.01 m/é for accelerations
GPS b . 0.1 deg/sec for gyros
{\Ljeps}:[%g(l’g} v |+ noise (20) IMU - Injected bias
b 0.5 m/$ for accelerations
_ 4 2 deg/sec for gyros
2.5 GPSdelay handling - Standar d deviation of white noise
0.01 m/s
| Zide——F— 1 47, GPS - Delay
Kalman Filter [ | [ [ | Ko, 400 ms
measurement ) | : : | | prev - Standard deviation of white noise
update X 0.02
) I
[ [ gnew, | | Time update ) Magnetometer - Disturbances
I | prew | | X, 12 occurrences at random timing with
: o I L |Timeupd:ne : R random magnitude in [0.5,2.0]
| és |)F()s+1 [ | | Figure 6 shows the vehicle sideslip, yaw, and roll
| | | [

|
| angle estimation of the simulation. Blue dottecérare
_ ) S ) k estimations and red solid lines are referencesrus t
Fig. 4 Discrete Kalman filter framework to handiday/s values. Several peaks of MAG norm in Figure 6(a)
indicate the occurrences of magnetic disturbarieesn
[US®V®®]in Equation (20) have significant delays magnetic disturbances,g the vehicle sideslip
inherited from the property of a low-cost GPS[1Q-¥2 estimation stays close to the true values througtiw
method similar to what Larsen proposed [18] is whole time (Figure 6(b)). This suggests the magneti
implemented. Figure 4 shows a discrete time Kalman the disturbance rejection logic effectively funeiso In
filter framework to address delays. From time stép k, Figure 6(b), four areas are identified as A: flaplaalt,
state estimation and its covariance are evolveg onl B: banked asphalt, C: flat ice, and D: banked ice
through the time update because GPS measurements ar surfaces. Accurate sideslip estimations in aread @
unavailable. At time step k, GPS measurement is prove the robustness of the proposed method terdift
available @z ) but it represents a value of time s due to surface friction levels. Additionally, desirable
] ] ] ] performances of area B and D demonstrate that the
the delay. Accordingly, is shifted back to time s and  method works even on baked roads. This is possible

because vehicle roll angles are accurately estimiye

v



the method (Figure 6(d)). The dotted green line in
Figure 6(c) is the yaw angle estimation without the
magnetic disturbance rejecting modification. Siipaifit
errors of dotted green lines suggest that MAG
disturbance is effectively rejected by the method.

(a) IMAG norm - 1|
1
I I I I
| | | |
|
|

08F —————— ==~~~

06F-————-l-—— -l

0

time (s)

(c) Yaw Angle
100 T T

deg

1
100 150 250

(d) Roll Angle

200

time(s)
Fig. 6 Vehicle sideslip, yaw and roll angle estiimas with
the presence of random magnetic disturbances

3.2 Experimental Verifications

A GM Silverado truck is used for experimental
verification. Four types of maneuvers (single lane
change, double lane change, slalom, and J-turng wer
run on packed snow and ice surfaces at the TRWeaaint
Test Track in Raco, Michigan. Two different vehicle
speeds representing fast (90 KPH on snow, 50 KPH on
ice) and slow (60 KPH on snow, 30 KPH on ice) were
executed. Each driving scenario had 5 runs; a t6ta0
data sets were collected. An Xsens MTi magnetometer
and an IMU from a production ESC unit (TRW) were
used. An Oxford RT2500, with a single GPS receiver,
was installed for the reference signal. The vehiaii
installed equipment is shown in Figure 7.

e & B, B .

< E .
Fig. 7 Setup on the experimental vehicle
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re-sampled at 5 Hz. Figure 8 shows typical traces o
experimental data. As seen in the figure, sideslip
estimation stays close to the reference signalurd-T
sideslip angle estimation shows deviation at the @fn

the run because that is when the vehicle slows down
significantly. Errors in sideslip estimation due &S
noise grows as a vehicle’'s speed reduces[8]. The
sideslip RMS error from 70 collected data is°1.3

Sideslip Angle (SLC)
20

10 [ e GPSIMAG | — A — — — b — — g bk ]
[ i | | I I I

g o T ; T i i -1
| | | I | I I

e T T T e

-20
o

20

REF i i i i i

10

o

-10

-20
o

time(s)
Sideslip Angle  (3Trun)
I I I I
) I
[l [l | | | | |
1

Fig. 8 Experimental sideslip estimation performafsiagle
lane change, double lane change, slalom and J-turn)

As the test track environments were MAG-noise free,
on-tract data process does not verify MAG distudean
rejection logic. To verify MAG disturbance rejedin
capability, randomly generated MAG disturbances
(norm magnitude of [0.05, 1] at 20% occurrence)rate
are injected into the on-tract data. The statiktica
property of the disturbance is chosen based uptualac
highway data. With the disturbances, the sidesiSR
error from 70 data sets becomes 2,.98hich is 0.68
worse than the MAG disturbance-free data. For @irth
statistical analysis on MAG disturbance rejectiogid,

a representative data of each maneuver is selectéd
the data is processed twenty times with randomly
generated MAG disturbances of various magnitudes an
frequencies. The results are shown in Figure 9. Red
lines are the reference signals, blue lines aimatons,
and green lines are estimation without MAG
disturbance rejection modificatioM(in Equation (16)).

As seen in the figure, the proposed method suadgssf
rejects MAG disturbances. The RMS error from 8Gadat
sets (4 selected data x 20 runs each) is®lvdth a
MAG disturbance of [0.05, 1] at 20% occurrence .rate
Performance is similar with MAG disturbance of [[1,2
at 20 % occurrence rate. However, a 40% occurrence
rate has the performance value of 2.23

Figure 10 shows traces of roll angle estimatiothef
method; the estimation follows the reference signal
accurately. The RMS errors from 70 data sets are

The experimental data processing uses GPS signalscalculated, and without the MAG disturbances, it is

from the RT2500. To mimic a low-cost GPS receiver

signal, a 400 ms delay is injected and the data are

0.81°. With the simulated MAG disturbances, it slightly



increases to 0.84

[4]

Sideslip (SLC) Sideslip (SLL)
100 60
| | | | | |
eroTroTroTTTT wol L L __
G0l — —f ——f - —+ - — i i T
mol — L _ L__1__/] . i | |
ORI PO I I T RE T T T
i | #: % f |
B 0_’—‘_,7F7 B o_b_,—d\w, [5]
20—~ — — A=Y DS sa I ¥ ¥
aol — L LT ol i P (et | it B
| I | | | |
o T T E T T T T T
@Ol — — = = = = — — o | | | []
100 | | | so | | | 6
o 0 20 30 20 0 20 30 20

Fig. 9 Experimental sideslip estimation performawith
randomly generated MAG disturbances (20 runs each)

Roll Angle (DLC) Roll Angle (SLL) [ ]

(8]

20
time(s)

Fig. 10 Experimental roll angle estimation perfonoa

[9]
5. CONCLUSION

This paper shows that the vehicle sideslip angte ca
be estimated by combining measurements from a GPS,
a magnetometer, and an IMU. The Kalman filter is [10]
employed for sensor fusion. To reject magneticdfiel
disturbances, a new stochastic filter is designasked
on the joint Normal and Truncated Normal distribati
and fitted into the Kalman filter framework. [11]
Comprehensive simulations show that the sideslip
estimation stays accurate regardless of surfacéofni
type, road bank, and magnetic field disturbances.
Experimental results verify that the estimation
performance is acceptable for various maneuvers. Th [12]
RMS error is 1.3 but it increases to 2.23with
significant amount of MAG disturbances. Disturbance
occurrence rates have more impact on the perforenanc
than disturbance magnitudes. Experimental data also [13]
show that the proposed method can estimate vetaltle
angles accurately.
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