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Adaptive robust force control for vehicle active suspensions
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SUMMARY

In this paper, the modular adaptive robust control (MARC) technique is applied to design the force loop
controller of an electro-hydraulic active suspension system. A key advantage of this modular design
approach lies in the fact that the adaptation algorithm can be designed for explicit estimation convergence.
The effect of parameter adaptation on force tracking performance can be compensated and thus it is
possible to guaranteed certain control performance. Experimental results from a quarter-car active
suspension test rig show that when realistic external disturbances and measurement noises exist, the
modular design achieves a better estimate than the non-modular ARC design. The improved estimation
was found to result in control signals with slightly lower magnitude while maintaining similar tracking
performance. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The control of active suspension (AS) systems has been enthusiastically studied by many
researchers over the last 20 years. Many papers have been published in its control design
and performance assessment (see Reference [1] for a comprehensive review). A closer
examination of these papers, however, shows that most of these published results were focused
on the main-loop design, i.e. on figuring out the active force to be applied, as a function of
vehicle states and road disturbance input. Much of the existing literature assumes that the
commanded force is produced accurately by an ideal sub-loop control system. Simulation
verifications of these main-loop designs were frequently carried out without considering
actuator dynamics, or with highly simplified sub-loop dynamics. In reality, actuator dynamics
can be quite complicated, and strong interaction between the actuator and the vehicle
suspension exists. This is especially true for hydraulic actuators, which remain one of the most
viable choices due to their high power-to-weight ratio and low cost. However, hydraulic
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actuators also have several adverse attributes: they are non-linear and their force generation
capabilities are highly coupled to the vehicle body motions [2]. As a result, little experimental
verification on active suspension algorithms has been reported and all of them are confined to
low frequency (2–4 Hz) regions [3–5]. Implementation results at higher frequency are desired in
order to achieve the full benefit of active suspensions. Specifically, since the vehicle wheel-hop
mode is usually around 10 Hz; it is desirable to achieve good force tracking results up to
at least 10 Hz:

To help realize the vast number of prior research results on main-loop control designs, several
recent works were focused on the sub-loop (force-tracking) control problem. That is, how to
design a sub-loop controller to achieve the desired force commanded by the main-loop
controller accurately, using a hydraulic actuator. Different approaches have been proposed, and
those using linear actuator models (e.g. References [6, 7]) have not found satisfactory results in
experiments. When non-linear control algorithms were applied, good force tracking results up
to 2 Hz were reported in References [3, 5]. Most of these recent papers emphasize the
importance of dealing with uncertainties, because of the fact that parameters may vary
significantly in hydraulic systems.

To deal with these uncertainties, robust control [5, 8] and adaptive control [3, 9, 10] techniques
have been applied to active suspension applications. The sliding mode control [5, 8]
has a significant drawback resulting from the switching at the sliding surface of the control
law. In practice, imperfection in control devices and delays often leads to chattering. In AS
applications that use hydraulic actuators, chattering degrades performance and may cause
instability due to the high-frequency resonance of the fluid column in the actuator. A smoothed
version of the controller may be used, however tracking performance is usually significantly
compromised. On the other hand, adaptive techniques usually require modifications to
guarantee boundedness of the estimates. These make them difficult to guarantee transient
tracking accuracy, and asymptotic tracking may be lost even when external disturbances
do not exist.

The adaptive robust control (ARC) technique [11] was developed recently to combine the
benefits of robust and adaptive control methods while avoiding their drawbacks. More
specifically, the main goals of the ARC technique are to achieve guaranteed steady state and
transient tracking accuracy (properties of deterministic robust controls) and asymptotic
tracking at the absence of disturbances without relying on discontinuous switching or infinite
control gains (property of adaptive controls). It is found from our experience, however, that the
adaptation algorithm of the original ARC technique does not perform well when significant
external disturbances exist. In our laboratory, the estimated parameters usually diverge toward
the upper or lower bound which commonly causes higher-than-necessary control gains, or even
instability. In this paper, we present a modular ARC technique recently proposed by the authors
[12, 13]. The adaptation law is designed specifically for parameter convergence, and proven
estimation schemes such as least-square update laws can be used. The new update law was found
to be more accurate than the one proposed in the original ARC algorithm, and the control gains
are usually reduced.

The remainder of this paper is organized as follows: The model of a quarter-car suspension,
including the hydraulic actuation system, is presented in Section 2. Both the force-tracking
controller and the main-loop controller used in this work are presented in Section 3. The
experimental set-ups and test results are shown in Section 4. Finally, summary and conclusions
are given in Section 5.
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2. MODELLING

The active suspension system can be divided into two parts: the quarter-car suspension and the
hydraulic actuator. These two parts are presented separately in the following two subsections.

2.1. Suspension model

It is widely accepted that a quarter-car model is adequate to study the trade-offs among the
three suspension performance goals: ride quality, road holding and suspension packaging. For a
quarter-car suspension, vehicle roll and pitch motions are ignored and the only degrees of
freedom included are the vertical motions of the sprung mass and the unsprung mass. A lumped
and linearized quarter-car suspension model is shown in Figure 1.

In Figure 1, ms and mus represent the vehicle sprung mass (1
4
of the body mass) and the

unsprung mass, respectively. ks and cs are the stiffness and damping coefficients of the vehicle
suspension, kus and cus are the tire stiffness and damping coefficients. xc; xw and xr denote the
displacements of the vehicle body, the wheel and the road, respectively. Fa represents the
extending force exerted by a hydraulic actuator, both on ms and mus: It is straightforward to
obtain the dynamic equations from the Newton’s law:

.xxc ¼
1

ms
ðksðxw � xcÞ þ csð ’xxw � ’xxcÞ þ FaÞ ð1Þ

.xxw ¼
1

mus
ð�ksðxw � xcÞ � csð ’xxw � ’xxcÞ � Fa þ kusðxr � xuÞ þ cusð ’xxr � ’xxwÞÞ ð2Þ

These two equations can be rewritten in the state space form as

’XX ¼AX þ BFa þ G ’xxr

Y ¼CX þ DFa ð3Þ

Figure 1. Linear quarter-car suspension model.
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where X ¼ ½xr � xw; ’xxw; xw � xc; ’xxc�T: This quarter-car model can be found in numerous
publications (e.g. Reference [1]) and thus the details are omitted here. Note that the parameter
values are lumped equivalent values combining effects of all suspension components (e.g.
bushings) and geometrical characteristics (e.g. tilting angles). It is well known, however, that the
lumped model is an accurate approximation and has been widely used in control designs and
analyses.

2.2. Actuator model

Figure 2 shows a schematic diagram of an electronically controlled hydraulic actuator. In this
figure, Ps is the hydraulic supply pressure and Pr ð� 0Þ is the return pressure. xsp is the spool
valve displacement, Pu and Pl are the fluid pressures in the upper and lower cylinder chambers of
the actuator. x0w � x0c is the hydraulic piston displacement which, due to the inclination of the
suspension, is approximately equal to kasðxw � xcÞ where kas is a constant. When differences
between Pu and Pl exist, the hydraulic cylinder extends or compresses.

Assuming that changes in pressures from their equilibrium values in both sides of the
hydraulic cylinder are about the same in magnitude and that the servo-valve dynamics are
negligible, a simplified force model can be obtained [8]

’FFa ¼ b k1ð ’xxw � ’xxcÞ � k2Fa þ k3xsp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � sgnðxspÞFa=Ap

qh i
ð4Þ

where b is the fluid bulk modulus, k1 � kasA2
p=V ; kas � ðx0w � xcÞ=ðxw � xcÞ; Ap is the piston

area, V is the total volume of the cylinder chamber, k2 � kp=2V ; kp is a damping coefficient,
k3 � Apkxd=

ffiffiffi
2

p
V ; kxd is the orifice flow coefficient and xsp (the spool valve position) is the

control input.

3. CONTROLLER DESIGN

The active suspension problem studied in this paper is a disturbance (road undulation) rejection
problem. The goal is to achieve good ride quality, road holding and suspension packaging.

Figure 2. Components of an electro-hydraulic actuator.
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More specifically, reduced magnitude in .xxc; xr � xw and xw � xc: The control architecture we are
using consists of two parts: a force-loop (sub-loop) controller and a main-loop controller as
shown in Figure 3. As stated earlier, the main focus of this paper is on the design of the force-
loop controller. Two design methods will be used: the original ARC, and a modular ARC design
technique. The force-loop controllers are assumed to be working with a main-loop controller,
which is designed based on the popular linear quadratic (LQ) design method. A brief discussion
of the LQ-based main-loop designs is given in Section 3.1 below.

It is important to note here that the two-loop design approach does not always guarantee the
stability of the combined system. We are simply designing a ‘better’ sub-loop controller in this
paper. After this is done, the performance limitation of the sub-loop should be considered in the
revised main-loop design, which does not make the unrealistic assumption of an infinite-
bandwidth sub-loop. This re-design of the main-loop is beyond the scope of this paper.

3.1. Main-loop controller

The LQ and linear quadratic Gaussian (LQG) techniques are the most popular main-loop
design approaches because trade-offs among multiple objectives (ride quality, road holding,
packaging, etc.) can be included naturally and systematically. By assuming that an ideal force
controller is available, the LQ control gains are calculated by minimizing the performance
index:

J ¼
Z 1

0

ðxr � xwÞ
2 þ r1ðxw � xcÞ

2 þ r2 .xx2c þ r3F 2
a dt ð5Þ

where ri are constant weighting factors. The first three terms in the cost function represent three
design objectives: road holding, packaging and ride comfort. Using the plant model (Equation
(3)) with the parameters shown in Table I, the cost function in Equation (5) and weights
r1 ¼ 0; r2 ¼ 1� 10�6; r3 ¼ 1:3� 10�12; we obtain the LQ gains ½7:074� 104;�1:192� 103; 4:
876� 103; 4:854� 104�; which are used throughout this work. The closed-loop transfer
functions for ride and handling are shown in Figures 4(a) and 4(b), respectively.

Suspension 
System 

Main-Loop
Controller

Measurements

Hydraulic 
Actuator 

Force 

Suspension Speed

Force 
Controller 

MAIN LOOP 

FORCE LOOP 

Desired Force

Road Disturbance

isv

Figure 3. Controller architecture.
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For the LQG controller, the LQ gains described above are used with a Kalman-filter to obtain
state estimates. It was assumed that the sprung mass acceleration ð .xxcÞ and the unsprung mass
acceleration ð .xxwÞ measurements are available in addition to the suspension stroke. In other
words, the output vector is assumed to be Y ¼ ½xw � xc; .xxw; .xxc�: We use these three
measurements because of two reasons. First, it is known that an LQG controller with
only suspension stroke measurement is not robust enough [14]. Secondly, accelerometers are
cheap and readily available. The disturbance ðQÞ and measurement noise ðRÞ covariance
matrices used are

Q ¼

1 2 0 0

2 18 0 0

0 0 0:01 0

0 0 0 0:5

2
666664

3
777775 and R ¼

1:2� 10�4 0 0

0 0:2 0

0 0 0:02

2
664

3
775

where R was estimated from sensor readings of our test rig. The matrix Q was constructed to
reflect the fact that the road excitation is the main source of disturbances. The off-diagonal

Table I. Suspension system parameters.

ms 285 kg t 0:0046 s
mus 40:8 kg Ap 0:0011 m2

cs 535 N=m=s Kxd 0:0012 m3=s=N1=2

cus 747 N=m=s V 1:16e� 4 m2

ks 17756 N=m b 4:4e7 N=m2

kus 190125 N=m Ksv 0:0157 m=A
Ps 1000 psi kf 10000 N=m=s
kas 0.7 kp 0
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Figure 4. Frequency response of the LQ controlled AS.
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terms are caused by the fact that the same road excitation affects the first two states. Using these
matrices, the resulting observer gains are

L ¼

0:115 2:22 0:267

�8:36 2:79 29:6

1:9 4:55� 10�4 0:59

2:29 �1:58 1:96

2
666664

3
777775

3.2. Force-loop controllers

The main objective of the force-loop controllers is to track the desired force commanded by the
main-loop controller accurately. Owing to the existence of uncertainties (both general and
parametric) in the actuator loop, the force loop was designed based on the ARC technique, to
achieve superior robust performance. Among all parameters, the lumped bulk modulus b is the
most probable to change significantly because of trapped air, flexibility of tubes, leakage, etc.
Therefore, b is modelled as an unknown parameter in the ARC problem formulation. The force
loop is designed using both the original ARC and the modular ARC techniques.

3.2.1. ARC controller. The force dynamics (Equation (4)) can be simplified to the following
equation:

’FFa ¼ y1½k1ð ’xxw � ’xxcÞ � k2Fa þ k3u� þ d ð6Þ

where

u ¼ xsp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � sgnðxspÞFa=Ap

q
ð7Þ

is the virtual control signal. y1 ¼ b is the main parameter to be adapted, and d represents general
uncertainties arising from un-modelled dynamics and disturbances. We assume that 05y1m5
y15y1M and jd j5dM and all the bounds are known. In addition to the three measurements used
by the main-loop controller, ’xxw � ’xxc (suspension deflection rate) is required by the servo-loop.

Equation (6) is similar to the parametric strict-feedback form in which a procedure for
designing an ARC controller is available [11]. Hence, a force controller can be designed using
the original ARC techniques. Define V1 ¼ 1

2
z21; where z1 � Fa � Fd; it can be shown (see

Appendix B) that if we apply the control law u ¼ u1a þ u1s; where

u1a ¼
1

k3
�k1ð ’xxw � ’xxcÞ þ k2Fa þ

1

#yy1p
ð ’FFd � c1z1Þ

� �
ð8Þ

u1s ¼ �z1
1

4y1mk3

1

e11
P2

1ðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ
2 þ

1

e12
d2M

� �

and the parameter update law

’#yy#yy1 ¼ g1z1½k1ð ’xxw � ’xxcÞ � k2Fa þ k3u1a� � g1t1 ð9Þ

then the Lyapunov function converges exponentially to within a neighbourhood of the origin

V1ðtÞ4e�2c1tV1ð0Þ þ
e11 þ e12

2c1
ð10Þ
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Equation (8) shows that the control law is divided into the adaptive part (u1a) and the robust
stability part (u1s). #yy1 is the estimate of y1; #yy1p � pð#yy1Þ is the projected estimate of y1; where pð Þ
is a bounded, smooth, non-decreasing function such that pð#yy1Þ ¼ #yy1 when #yy1 2 ½y1m; y1M � and
jy1 � #yy1pj5P1; a known positive constant. Fd is the bounded desired force which is assumed to
have a bounded derivative. c1; e11 and e12 are positive gains.

From Equation (10), it is clear that Fa is bounded whenever Fd is bounded. Furthermore,
when the disturbance d is zero, asymptotic tracking can be verified by using the Lyapunov
candidate

V2 ¼
1

2
z21 þ

1

g1

Z *yy1

0

ðy1 � pðy1 � vÞÞ dv

where *yy1 � y1 � #yy1: It can be shown that ’VV24� c1z21 by using the fact z1u1s40: This implies
that z1 converges to zero [11]. Finally, the actual control signal xsp can be computed from
Equation (7) by using the virtual control signal u:

3.2.2. Modular ARC controller. In the modular ARC design, the controller is decomposed into
a control module and an identifier module}an indirect adaptive control approach. The main
goal is to add flexibility to the identifier design without changing the properties of the ARC
techniques. This technique has been illustrated in another paper [13] and is also available in
Reference [12]. Details are thus omitted here.

The key reason why modularization works is that the effects of the identifier module are
dominated rather than cancelled as in the original ARC design. The effects of both estimation
error and adaptation rate are included in the control law design. For the hydraulic control
problem studied in this paper, the adaptation rate does not affect the dynamics of the plant. As a
result, the MARC control law is identical to the original ARC controller. This allows us to
compare the performance of the identifiers more easily.

The identification module to be described below is based on a swapping identifier for non-
linear systems without general uncertainties [15]. To handle general uncertainties in the ARC
formulation, several modifications are required. By combining Equations (6) and (8) and writing
in terms of z1 ð� Fa � FdÞ; we obtain

’zz1 ¼ Azz1 þ *yy1pw1 þ d ð11Þ

where

Az � � c1 � #yy1pk3s1; s1 ¼
1

4y1mk3

1

e11
P2

1ðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ
2 þ

1

e12
d2M

� �
;

*yy1p ¼ y1 � #yy1p and w1 ¼ k1ð ’xxw � ’xxcÞ � k2Fa þ k3u

Define two filters

’OO ¼ AzOþ w1; Oðt0Þ ¼ 0 ð12Þ

’OO0 ¼ AzO0 þ w1
#yy1p; O0ðt0Þ ¼ �z1ðt0Þ ð13Þ

it can be shown that

e1 ¼ O*yy1 þ *ee1 ð14Þ
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where e1 � z1 � O#yy1 þ O0 and

’*ee*ee1 ¼ Az *ee1 þ d; *ee1ðt0Þ ¼ 0 ð15Þ

By using the filters shown in Equations (12) and (13), Equation (6) is replaced by the static
equation shown in Equation (14). Since *ee1 converges to zero exponentially after finite time when
d ¼ 0; Equation (14) can be used to design an update law for #yy1: To guarantee boundedness of
#yy1; the update law is selected to be

’#yy#yy1 ¼ P1fmð#yy1Þ þYðOe1Þg ð16Þ

’PP1 ¼ �P 2
1O

2fðOe1Þ; P1ðt0Þ > 0 ð17Þ

where

mð#yy1Þ ¼

ðy1m � #yy1Þ; #yy15y1m

0; y1m4#yy14y1M ;

�ð#yy1 � y1M Þ; #yy1 > y1M

8>>><
>>>:

YðxÞ ¼
x; jxj4m1

m1
x
jxj
; jxj > m1

8<
:

m1 is an arbitrary positive constant, P1 is a covariance matrix, and

fðxÞ ¼
m1=jxj when jxj > m1

1 otherwise

(

The main purpose of function Yð Þ is to keep the vector Oe1 bounded without changing its
direction. When combined with mð Þ; these two functions keep the estimate #yy1 bounded. In
addition, the estimate can be kept positive and away from zero by adjusting m1 to ensure finite
control signals. With these filters and adaptation rules, all states of the identifier module are
bounded. Furthermore, output asymptotic tracking is obtained when d � 0 (proof is shown in
Appendix C). In other words, the desirable properties of the original ARC controller are
preserved.

3.2.3. Command signal filtering. Both the ARC and MARC control laws require the derivative
of desired force ’FFd (see Equation (8)). This can be obtained by introducing a command signal
filter as outlined in Reference [11]. This filter also allows the bounds of the tracking error to be
adjusted independently from the initial conditions of the system, which is important for higher-
order systems. In this paper, the following filter is used:

’xx ¼ � afxþ Fd

Yr ¼
1

�af

" #
xþ

0

1

" #
Fd ð18Þ

where x 2 R; af is a positive constant, Yr � ½Fdf ; ’FFdf �T and Fdf is the filtered desired force signal.
Fdf and ’FFdf are then used in place of Fd and ’FFd in the control laws.
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4. EXPERIMENTAL RESULTS

In this section, experimental results are presented to examine the performance of the MARC
algorithm. Three types of experiments are presented: force-loop experiments, complete system
experiments and parameter estimation experiments. In the force-loop experiments, the main
objective is to show performance of the controllers designed in previous sections without
including the main-loop controllers. Bode plots of transfer functions from desired force to
actual force are used to present the effectiveness of the controller at various frequencies. In the
complete system experiments, the performance under integrated main-loop and force-loop
controllers is assessed. Bode plots of the transfer functions from road excitation to sprung mass
acceleration and tire deflection are used to present the effectiveness of the controller at various
frequencies. Finally, the parameter estimation experiments are used to compare the
identification accuracy between the modular and the non-modular controller.

In the first two types of experiments, the parameter adaptations were turned off. This makes it
possible for us to separately examine the performance of the control law and the identifier
performance. It will be shown later in this paper that the identifier performance of ARC and
MARC are quite different. So turning on the identifier will complicate the analysis and
discussion of the results. For our application, the ARC and the Modular ARC have identical
control laws when their parameter adaptations are turned off. Hence, the control results for the
first two sets of experiments are the same for ARC and MARC. Note that the estimate of y1 was
set to a constant value identified by the Modular ARC controller to be shown in Section 4.3.

The University of Michigan active suspension test rig shown in Figure 5 is a quarter car test
rig originally built by the Ford Motor Company. The test rig contains two hydraulic actuators:

Figure 5. The quarter car active suspension test rig.
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a road actuator and a suspension actuator. The road actuator is used to simulate road excitation
while the suspension actuator is controlled to attenuate the body motions due to the road
disturbance. A 15 hp; 20 gpm hydraulic pump running at 1000 psi supplies power to the
actuators. Two hydraulic accumulators were installed along the supply line. Three linear
variable differential transformers (LVDTs) and two linear velocity transducers (LVTs) are used
to measure road displacement, wheel displacement, vehicle body displacement, wheel speed and
vehicle body speed, respectively. Two accelerometers were installed to measure the vehicle body
acceleration and the wheel acceleration. A force sensor is also available to measure the
suspension actuator force. A 120 MHz Pentium computer, an AC-100 DSP board and
MATRIXx software are used to facilitate controller implementations.

4.1. Force-loop experiments

For this set of experiments, the main objective is to examine how well the actual force
follows the desired force. As stated in Section 1, existing experimental results are limited
to 3 Hz or below, but it is desired to achieve 10 Hz or higher. The control parameters used are
given in Appendix A.1. Figures 6 and 7 show the force tracking results at 5 and 10 Hz;
respectively. In Figure 8, the force tracking results at various frequencies are presented.
At each frequency, the response, which is not purely sinusoidal, is replaced by a least-square
sinusoidal equivalent. A PD controller is also presented in this plot as a benchmark. The PD
control gains are ‘‘optimal’’ obtained through brute-force searching. In this figure, the solid line
shows the frequency response of an ideal force controller with 10 Hz bandwidth (simulated).
This is expected to be the ideal response of the ARC controller because of the 10 Hz command
signal filter.

It can be seen that the bandwidth of the ARC controller is around 8 Hz; and it works quite
well up to 10 Hz; which is the range desired for AS applications. On the other hand, the PD
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Figure 6. ARC force tracking at 5 Hz:
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controller performs well only up to 0:5 Hz and between 3 and 5 Hz: Note that, it is possible to
improve the performance of the ARC controller. However, we found that most of those
controllers will have higher gains and become unstable when combined with the main-loop
controller.

The results shown above are qualitatively similar to those in recent papers by Alleyne (e.g.
Reference [9]), even though the plants are not the same. In particular, the interaction between
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the actuator and the plant results in transfer function zeroes at different frequencies (two zeroes
at 4 Hz in Reference [9], and two zeroes at 1 Hz and two zeroes at 10 Hz for this paper).

4.2. Complete system experiments

The performance of the combined inner-outer-loop controllers is presented in this section. Two
outer-loop controllers are used: LQ and LQG controllers. An ideal (simulated) force controller
with 10 Hz bandwidth will be used as the benchmark. Although the system is non-linear,
transfer functions at prescribed input levels will be reported as is commonly used in the
literature, e.g. Reference [5]. The transfer functions from ’xxr to .xxc and xr � xw; (representing ride
comfort and handling) are used as the main performance indices of the controllers [1]. A
controller is said to perform well if its transfer function magnitude is close to that of the closed-
loop system with an ideal force controller. The performance of the closed-loop system with PD
force-loop controller is also presented for comparison.

The LQ controller, which requires full-state feedback, represents an ideal outer-loop
controller. The performance degradation (comparing the LQ-ARC with the simulated LQ-
ideal) is likely due to the force-loop controller. The LQG controller represents a more realistic
implementation of the outer-loop controller, and thus the performance of LQG-ARC is of
interest. The LQG controller is assumed to use information that can be measured cheaply
ðxw � xc; .xxw; .xxc and Fa). On the contrary, the LQ controller requires information that is hard to
measure directly, including tire deflection and its rate of change, which makes it impractical for
real applications.

The experimental results are shown in Figures 9 and 10. In each figure, the dashed line
represents a passive suspension (simulated). Its parameter values are the same as the test rig
except that the suspension’s damping ratio is changed from 12 to 35% for closer representation
of a typical passive suspension [16]. This is due to the fact that the pneumatic spring used in our
test rig is not meant to work by itself and thus has a lower-than-normal damping. The solid line
represents the (simulated) LQ controller with an ideal force-loop controller (10 Hz bandwidth).
The closer the experimental results are to this line, the better the controller performance is. In
addition, if the experimental results are lower than the dashed line, that means the controller
performs better than the passive suspension system. For ride quality, the critical frequency range
is 4–8 Hz and for tire deflection, lower frequencies are more important than higher frequencies.

Figure 9 shows that the ARC controller performs very well when combined with the LQ
controller. Except for frequencies higher than 10 Hz; the ARC controller’s performance is close
to that of the ideal force-loop controller (within �3 dB). Overall, the LQ-ARC performs better
than the passive system up to 10 Hz: It improves ride comfort (smaller .xxc) and enhances
handling (lower xr � xw). Figures 9(a) and 9(b) also show that the LQG-ARC controller works
essentially as well as the LQ-ARC controller in terms of reducing sprung mass acceleration.
However, the LQG-ARC controller has slightly worse tire deflection performance between 3
and 5 Hz: This performance reduction is probably caused by state estimation problems,
especially tire deflection and its derivative. Tire deflection is difficult to estimate since it is
extremely small and is directly influenced by the road disturbance.

Comparing the results of the LQ/LQG-ARC with the LQ/LQG-PD controller in Figure 10(a)
and 10(b), one can see that the performance of the LQ/LQG-PD controller is very poor,
especially around intermediate to high frequencies (3–10 Hz). The LQ-PD controller performs
better than the passive system only for frequencies up to 2 Hz:
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4.3. Parameter estimation experiments

In this section, the performance of the modular ARC in identifying unknown parameter (y1) is
verified experimentally. The parameters of the controllers are given in Appendix A.2. The
experiments simulate the actual working conditions of a complete AS system (LQ-MARC).
Realistic road excitations were generated by passing a Gaussian white noise signal though a
first-order low-past filter (cut-off at 10 Hz). The signal’s power was adjusted such that the
resulting power spectral density around 1–10 Hz region is close to that of a medium-roughness
highway [16].
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Figure 9. LQ/LQG-ARC transfer function gains ( ’xxr to .xxc and ’xxr to xr � xw).
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From our experience, it was found that the estimation accuracy can be significantly improved
by slightly modifying the modular ARC controller presented in Section 3. First, it was observed
that the force between the sprung mass and the unsprung mass is Fm ¼ Fa þ kf ð ’xxw � ’xxcÞ; where
the friction is modelled simply as a damper with a constant kf and Fa is the force resulting from
fluid pressures only. As a result, we see that Equation (14) must be changed to

e1 ¼ OT *yy1 þ *kkf ð ’xxw � ’xxcÞ þ *ee1 ð19Þ

where e1 is calculated using the measured force; i.e. e1 ¼ Fm � Fd � O#yy1 þ O0; *kkf ¼ kf � #kkf and
#kkf is an estimate of kf : Secondly, we added a small constant to the covariance update equation in
order to prevent the adaptation from stopping entirely. This is similar to the covariance
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Figure 10. LQ/LQG-PD transfer function gains ( ’xxr to .xxc and ’xxr to xr � xw).
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resetting method but is easier to implement. With these two modifications, the new adaptation
rules are

’#yy#yy1 ¼ g1ðP1 þ p1Þðmð#yy1Þ þYðOe1ÞÞ ð20Þ

’#kk#kkf ¼ g2ðP2 þ p2Þð ’xxw � ’xxcÞe1 ð21Þ

’PP1 ¼ �P 2
1O

2fðOe1Þ ð22Þ

’PP2 ¼ �P 2
2 ð ’xxw � ’xxcÞ

2 ð23Þ

Note that the estimate of kf helps to improve the accuracy of e1; and hence the accuracy
of the estimate of #yy1: We should mention that this friction identification is presented here,
rather than earlier, because it is not part of our control scheme. In particular, the friction
parameter is identified but not used in the control law. Its existence, however, improved
the estimation of the bulk modulus. It is possible to include the friction in the model when
designing the control law. However, the controller uses the .xxw � .xxc signal which is usually
quite noisy.

Figure 11 shows the time trajectories of the estimates of LQ-MARC where #yy1ðt0Þ ¼ 0:5y1: It
can be seen that the estimate converges to the neighbourhood of the actual value. The estimate
of kf also converges, but we do not know whether it is close to the real value or not. The same
experiment was performed with the original ARC controller (LQ-ARC). It can be seen from
Figure 12 that the estimate of y1 diverges to the lower limit. We started this experiment at
#yy1ðt0Þ ¼ 2y1 because else #yy1 will have hit the lower bound right away.
How important is a more accurate parameter estimation? It is commonly accepted that the

estimations from a Lyapunov-based adaptation law can grow unbounded in real applications if
no extra patches/modifications are applied. It can be seen from Figure 12 that the estimate from
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Figure 11. Experimental result of LQ-MARC (#yy1ðt0Þ ¼ 0:5y1).
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the LQ-ARC controller diverges to its lower bound. Since the estimate appears in the
denominator of the control law, the ARC controller uses higher gain compared with the MARC
controller. As a result, the system may become unstable if the parameter lower bound (y1m) is
too small, as can be seen from Figure 12 (t > 30 s). It is important to note that from simulations
we found that the estimates from the ARC identifier can be accurate when uncertainties are
sufficiently small [8, 9]. For real vehicle applications, however, this requirement may impose
additional cost (better sensors) and operational constraints. Therefore, the MARC identifica-
tion scheme may be more practical.

5. SUMMARY AND CONCLUSION

In this paper, we studied the application of the newly developed modular ARC (MARC)
controller [12, 13] to the force control loop of an active suspension system. Experimental results
show that the proposed MARC controller performs the force tracking task very well up to
about 10 Hz; which is considerably higher than the 54 Hz results reported in the literature
[4, 5]. With the main loop controller, the results show that the controller performs satisfactorily
compared to the ideal force controller up to 10 Hz: The MARC controller was found to perform
much better than an ‘optimal’ PD controller. The integrated main-loop and sub-loop
performance was investigated, and the active suspension outperformed the passive suspension
system up to about 10 Hz in terms of ride quality. The tire deflection performance is only
improved up to about 2 Hz: Since tire deflection is related to tire lateral/longitudinal force
generation, this improvement may be adequate.

Finally, in the parameter identification experiments, the advantages of the modular ARC
controller over the original ARC were verified. Experimental results show that the parameter
estimation converged in the modular ARC design but diverged in the original ARC design. For
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Figure 12. Experimental result of LQ-ARC (#yy1ðt0Þ ¼ 2y1Þ:
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actual implementation in active suspension, the improved estimation is important because
smaller control signals could be used.

APPENDIX A: CONTROL PARAMETERS

A.1. Controller parameters for the force tracking experiments and the complete system
experiments

c1 ¼ 140; e11 ¼ e12 ¼ 15000; dM ¼ 50; y1m ¼ 0:9y1; y1M ¼ 1:1y1; #yy1 � 1:1y1 and af ¼ 62:

A.2. Controller parameters for the estimation experiments

c1 ¼ 100; e11 ¼ e12 ¼ 80000; dM ¼ 0; y1m ¼ 0:1y; y1M ¼ 2y; kf ðt0Þ ¼ 3000; af ¼ 62; g1 ¼ 0:05; g2 ¼
800;p1 ¼ 0:0005;p2 ¼ 0:01; P1ðt0Þ ¼ 1; P2ðt0Þ ¼ 1:

APPENDIX B: PROPERTIES OF THE ARC FORCE CONTROLLER

B.1. The guaranteed tracking accuracy of the system is provided by Equation (10) which is
obtained as follows. Let V1 ¼ 1

2
z21; using Equations (6) and (8), we have

’VV1 ¼ z1ðð*yy1p þ #yy1pÞðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ þ y1k3u1s þ d � ’FFdÞ

¼ � c1z21 þ z1ð*yy1pðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ þ y1k3u1s þ dÞ

where *yy1p � y1 � #yy1p: By the defined u1s and completing the squares, we have

’VV14� c1z21 þ e11 þ e12 ¼ �2c1V1 þ e11 þ e12

which results in Equation (10).
B.2. The asymptotic tracking property of the system (when d ¼ 0) is obtained as follows. Let

V2 ¼
1

2
z21 þ

1

g1

Z *yy1

0

ðy1 � pðy1 � vÞÞ dv

Note that V2 is positive definite. Differentiate V2 and note z1k3u1s40; we have

’VV24 z1ðð*yy1p þ #yy1pÞðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ � ’FFdÞ �
*yy1p
g1

’#yy#yy

4 � c1z21 þ z1 *yy1pðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ �
*yy1p
g1

’#yy#yy

If we choose
’#yy#yy1 ¼ g1z1ðk1ð ’xxw � ’xxcÞ � k2Fa þ k3u1aÞ; ’VV24� c1z21; i.e. z1 converges to zero

asymptotically.

APPENDIX C: OUTPUT ASYMPTOTIC TRACKING UNDER d ¼ 0

It is obvious that #yy1 is positive due to the saturation bounds used in the design ofYð Þ and mð Þ:
From Equation (10), z1 and Fa are bounded. Therefore, u1a; u1s;O and O0 are all bounded. P1 is
bounded because it is positive and non-increasing.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:83–102

S. CHANTRANUWATHANA AND H. PENG100



Asymptotic tracking when d � 0 is obtained as follows. From Equations (14) and (15), *ee1 is
identically zero. Let V3 ¼ ð1=2P1Þ*yy21; we have ’VV34� *yy1ðmð#yy1Þ þYðOe1ÞÞ þ ð*yy21=2ÞO

2f: Using
Equation (14) and the fact that *yy1mð#yy1Þ5m2ð#yy1Þ (see Figure C1), we have

’VV34� m2ð#yy1Þ þ *yy1YðOe1Þ þ
e21
2
f ðC1Þ

When Oe14m1; we have YðOe1Þ ¼ Oe1;f ¼ 1; and Equation (C1) can be written as

’VV34� m2ð#yy1Þ �
e21
2

ðC2Þ

When Oe1 > m1; YðOe1Þ ¼ f1Oe1;f ¼ m1=jOe1j and Equation (C1) becomes

’VV34� m2ð#yy1Þ �
fe21
2

ðC3Þ

In either case, Equation (C.3) holds true. Integrating both side of Equation (C3), we obtain

V3ðt0Þ � V3ð1Þ5
Z 1

t0

m2ð#yy1Þ þ
Z 1

t0

fe21
2

Since V3 is positive and non-increasing, V3ð1Þ exists, mð#yy1Þ 2 L2: Similarly, e1 2 L2 since f cannot
be arbitrarily close to zero. It follows from Equation (14) that O*yy1 2 L2 and

’#yy#yy1 2 L2 since P1 and
O are bounded.

Next, we will show that z1 2 L2: Let c ¼ O0 � O#yy1; we have ’cc ¼ Azc� O’#yy#yy1 þ w1ð#yy1p � #yy1Þ:

Further, ð#yy1p � #yy1Þ 2 L2 since jmð#yy1Þj5j#yy1p � #yy1j (Figure C1). Since O’#yy#yy1 þ w1ð#yy1p � #yy1Þ 2 L2 we

have c 2 L2: Using the fact z1 ¼ Oy1 � ðO0 � O#yy1Þ � O#yy1 ¼ OT *yy1 � c; z1 2 L2: Finally, from
Equation (11), by noting the boundedness of all signals established earlier, ’zz1 is bounded. Using
the Barbalat’s Lemma, it follows that z1 ! 0:
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