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Coupling Between Component Sizing and Regulation
Capability in Microgrids

Tulga Ersal, Changsun Ahn, Diane L. Peters, John W. Whitefoot, Abigail R. Mechtenberg, Ian A. Hiskens,
Huei Peng, Anna G. Stefanopoulou, Panos Y. Papalambros, and Jeffrey L. Stein

Abstract—Increasing energy security and reliability concerns
are intensifying the interest in microgrids. In this setting, design
optimization is vital to achieve a reliable infrastructure without
overbuilding. This paper considers the impact of frequency and
voltage regulation on the optimal design of a conceptual, au-
tonomous military microgrid. This microgrid comprises a solar
panel and vehicles as power sources, with each vehicle incorpo-
rating a battery and generator. The power output and terminal
voltage of these inverter-based sources must be regulated. The
paper investigates the effects of battery DC voltage variations on
a decentralized regulation scheme, and the resulting influence on
optimal component sizing. To this end, controllers are first de-
signed based on the typical assumption that the voltage on the DC
side of each inverter is constant. The battery internal resistance
is then considered and its impact on regulation performance is
investigated. The results show that the battery internal resistance
can affect the performance of both frequency and voltage regula-
tion, and consequently must be taken into account in component
sizing decisions. Thus, the paper identifies an important coupling
between regulation and component sizing problems through
battery characteristics, and highlights the need for a combined
sizing and regulation framework for microgrid design.

Index Terms—Batteries, frequency control, inverters, micro-
grids, voltage control.

I. INTRODUCTION

ICROGRIDS are collections of electrical loads and
micro-sources functioning as a single system that
can operate either in connection with a larger power grid
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or completely autonomously [1]. They have been attracting
much research interest due to their potential to increase energy
security and reliability, as well as foster the penetration of dis-
tributed renewable resources (e.g., wind, solar) and distributed
storage (e.g., plug-in vehicles, community energy storage)
[2]-[11]. Because of this potential, the U.S. Department of
Defense (DoD) is interested in microgrids as indicated by
the SPIDERS (Smart Power Infrastructure Demonstration
for Energy Reliability and Security) project, which aims to
demonstrate the first complete DoD installation with a secure
microgrid capable of islanding.

Whereas the SPIDERS project presents an example micro-
grid that can operate in both grid-connected and islanded mode,
forward operating bases (FOBs)—military bases temporarily
established to support tactical operations—exemplify the need
for maximizing operational autonomy. Traditionally, these
microgrids have relied entirely on diesel generators, whose
transportation and fuel re-supply increase the vulnerability of
the FOB and the supply lines themselves. Indeed, electric power
generation can account for over 70% of fuel consumption at or
near the tactical edge [12], and the U.S. Army indicates that
50% of the casualties during resupply missions in Iraq and
Afghanistan are due to fuel delivery [13].

To make FOBs more autonomous, the microgrid can leverage
local renewable resources and military vehicles with on-board
electrical generation and energy storage capability. Such a con-
cept FOB considered in this paper is shown in Fig. 1. Instead
of relying entirely on stationary generators, it integrates into
the microgrid a solar panel and a fleet of vehicles, each with a
battery and on-board generator. Military vehicles in a FOB re-
quire significant on-board electric power generation and storage
to supply electrical equipment such as radars, radios, and com-
puters. For strategic reasons, it is necessary to supply this power
with either minimum idling of the main propulsion engines or
in silent watch.

With this military application in mind, this paper is concerned
with optimal design of microgrids considering two different as-
pects: component sizing and regulation. One important aspect
of microgrid design is the sizing of its components. While com-
ponent sizing is often performed based on the expected peak
load of the microgrid, it has also been recognized that this ap-
proach may be highly conservative and sub-optimal, as many
components will be larger than necessary. Power dispatch con-
trol strategies can be used to reduce this conservatism, but at
the cost of coupling the optimal sizing and dispatch problems
[14]-[23]. On the other hand, the regulation problem focuses
on controlling the voltage and frequency in the microgrid.

Two types of sources in the example microgrid, the solar
panel and the batteries in the plug-in vehicle fleet, are DC and
need an inverter interface to connect to an AC microgrid (e.g.,
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Fig. 1. Example conceptual military microgrid considered in this study for a
forward operating base (FOB). The power sources consist of a solar panel array
and a fleet of electrified vehicles.
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Fig. 3. The integrated optimal microgrid design framework employed in this
study.

see Fig. 2). Controlling the inverter is critical to regulating the
AC voltage and power, as well as to establishing the microgrid
frequency during autonomous operation [24], [25]. Many tech-
niques have been proposed and used to achieve this goal [6],
[10], [11], [24]-[27]. However, coupling between the optimal
sizing and regulation problems has not yet been considered.

The goal of this paper is to explore the nature of such cou-
plings. This is achieved by creating an integrated framework in
which the sizing, dispatch, and regulation problems are opti-
mally solved in a nested manner (Fig. 3). The component sizing
is done first with no regard to regulation, but by considering
the optimal dispatch. This initial solution to the component
sizing and dispatch problem is then used to define the regu-
lation problem. The outcome of the regulation problem is a
new set of design constraints that were originally not included
in the optimal component sizing problem. The component
sizing problem is then solved again, and the process is iterated.
This framework is applied to the military microgrid example
in Fig. 1 as a case study to show that the coupling between
the component sizing and regulation problems can indeed be
significant.

The paper is organized as follows. The results of the initial
optimal sizing and dispatch study for the example microgrid
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are first summarized. This lays out the scenario for the subse-
quent regulation study. The paper then focuses on this regula-
tion problem. A model for the example microgrid is developed
and a fixed-structure controller is proposed to manage the power
setpoints of the battery and generator. The initial control design
assumes that the battery is a constant voltage source. Then, the
battery is modeled as a voltage source in series with a resistor
to approximate the battery internal resistance and its power lim-
itation. With this model, the effect of the battery resistance, or
power availability, on frequency and voltage regulation is in-
vestigated. Moreover, the internal resistance of a battery of a
particular chemistry is considered to further illustrate the ex-
tent to which regulation considerations can affect the compo-
nent sizing problem. Hence, a coupling is shown between the
fast-time-scale regulation and slow-time-scale sizing problems,
which traditionally have been studied independently due to the
disparity of their time scales.

II. MICROGRID SIZING AND DISPATCH

This section summarizes the results of the initial optimal
sizing and dispatch study. The worst-case scenario obtained
from these results defines the operating conditions for the
regulation study. The sizing study optimized the sizes of the
solar panel, batteries and generators, as well as the power
dispatch over a period of one year using a forward-looking
strategy to minimize annualized capital and fuel costs. The
mathematical formulation of this nested component sizing and
dispatch optimization is adopted from [23] and only the results
are summarized here for brevity.

The FOB was sized for 50 soldiers, using 120 kW peak
power and 67 kW average power. Solar irradiance data from
Afghanistan was used. The power output from the solar panel
was calculated as the product of rated power, a derating factor,
and the ratio of incident solar irradiance to the peak solar
irradiance of 1 kW / m?. It was assumed that the derating factor
of the PV array was maintained at 95% with a good maximum
power point tracking control algorithm. The optimization
resulted in a solar panel of 89 kW, a total of 8.4 kWh battery
capacity (4 vehicles with 2.1 kWh battery capacity each), and
a total of 120 kW plug-in vehicle generator power (30 kW per
vehicle). It also resulted in an optimal power dispatch strategy
for an entire year.

Worst case scenarios, from a regulation perspective, occur
when generation or load undergoes a step (or rapid) change,
introducing a sizeable mismatch between generation and con-
sumption. Fig. 4 illustrates the hourly load and generation tra-
jectories, for the example microgrid, for one of the days on
which a worst-case transient occurred. The shaded region shows
an abrupt drop in solar power. The generators were initially
idling as there was sufficient solar power to supply the loads
and charge the batteries. A 50 kW drop then occurred in the solar
power (e.g., due to cloud cover), requiring the batteries and gen-
erators to support the loads and stabilize the microgrid. As can
be seen in Fig. 4, the resulting optimal hourly sequence of dis-
patch commands involved the simultaneous increase of battery
and generator power.

For the purposes of this paper, it is assumed that a drop of this
magnitude could happen instantaneously and unexpectedly, for
example due to a sand storm or destruction of part of the solar
panel array, and hence it is referred to as the worst-case scenario.



1578

100 5

== Total Power Load
Solar 4

80

—o— Generator -3
60 -a- Battery 2
M M1
40 NN g 0

Power (kW)

T ¥ ¥
20 1+

Battery Power (kW)

2W4+——————+ -5

1 3 5 7 9 11 13 15 17 19 21 23
Hour of Day
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Fig. 5. Electricity grid model of the example microgrid shown in Fig. 1.

III. MICROGRID REGULATION

This section describes the regulation aspect of the integrated
framework of Fig. 3 in detail. The worst-case scenario identified
in the previous section defines the microgrid operating condi-
tions and disturbances that is considered.

A. Modeling the Microgrid

The microgrid in Fig. 1 consists of four buses: Two of them
are connected to loads; one is connected to an intermittent power
source, namely, the solar panel; and one is connected to a re-
configurable energy storage and power source, namely, a group
of vehicles. The grid is modeled as shown in Fig. 5. For the
purposes of this paper, the vehicles are aggregated into a single
generator and battery that are controlled independently. The ve-
hicles are assumed to be always available for supporting the
microgrid. Furthermore, within the short time scale of interest
(i.e., seconds), the number of vehicles connected to the micro-
grid is assumed to remain constant, leading to a constant gener-
ator and battery size. The loads are assumed critical and hence
no load-side power management (e.g., load shedding) is consid-
ered in this paper.

The solar panel and battery are interfaced with the AC micro-
grid through inverters. A model for the inverter-grid interface is
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shown in Fig. 2. The inverter is controlled to regulate the voltage
V; at the terminal bus and active power output £, to the grid.
This is achieved by controlling the modulation index m of the
inverter, which effectively controls the inverter voltage magni-
tude V; through the relationship

Vi=mo (1)

and the inverter firing angle, which effectively determines the
phase angle §;. In (1), Vj,asc 1s the base unit voltage that is used
for normalization to allow working with the per-unit system
[28], and V. is the DC voltage on the DC terminals of the in-
verter, which is established by the DC power source. The mod-
ulation index m is constrained by a saturation limit m < 1, so
it cannot compensate for arbitrarily low DC voltages.

This paper considers a phase-locked loop (PLL) based in-
verter control strategy as proposed in [24]. The PLL tracks the
AC voltage waveform at the inverter terminals to establish an
angle reference signal for the inverter firing circuitry [29]. As a
by-product, it also provides an estimate of the local frequency.
The power delivered to the microgrid is regulated by control-
ling the phase 8; of the inverter-synthesized voltage waveforms
relative to the PLL reference. The dynamics of the inverter con-
troller are given by the following set of differential-algebraic
equations:

=K, (Veer = Vi), (2a)
§ = K? (-Psct - Pout) s (2b)
a=Ks(8 —8,). 2c)
b, =w,, (2d)
0=y, M 2e)
base
0=6- (5 —5,). )
0=0a— (w, — Kubf), (2g)
‘/chinV
0= Pout - mv (2h)
0= Pout — V;;/t sin (61 — 5t) . (21)

Equations (2a) and (2b) correspond to integral control of V; and
P, where V. and P, are the desired values for V; and P, .,
respectively.Equations (2¢) and (2d) together describe the PLL
dynamics, which, in addition to integral control, also involves
damping due to the term K46 in the definition of the auxiliary
variable a (2g). The variable 6, gives the PLL phase angle, and
its time derivative w,, provides an estimate of the deviation of
system frequency from nominal. The integral action in (2¢) aims
to drive the difference between the PLL phase angle ¢, and
the terminal phase angle ; to zero. Further details of this PLL
model can be found in [24], [29]. Equations (2f) and (2g) de-
fine the variables # and a, respectively. Equation (2h) describes
the active power balance between the AC and DC side of the
inverter, with I;,, representing the inverter DC current. Finally,
(21) gives the active power delivered to the grid. The block dia-
gram shown in Fig. 6 illustrates the interaction between the PLL
and the power control scheme.

In this study, (2) is used to model the inverters for both the
solar panel and the battery. In addition to (2), the equations for
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Fig. 6. The power control scheme used in this paper.

the solar panel inverter are augmented with the following ex-
ogenous input for the power setpoint

Pset = Psolar (t) ) (3)

where P15 (1) is the available solar power at time 7 .

Without any control over the loads and solar panel setpoint,
the only components to be considered in the power setpoint con-
trol problem are the vehicle battery and generator. This is ad-
dressed in Section III-C.

Finally, the power balance at the buses is modeled as follows.
Using phasor notation, the AC terminal voltages are given by

Vi = ‘/tnejtsma n = 17 27 37 4, (4)
where n is an index for the terminals. The inverter internal AC
bus voltages V;,, are similarly defined. The line impedances be-
tween the terminals are expressed as

Zl,n = Rl,n +jX1,n7 n= 2, 35 4. (5)

The line and inverter currents are thus obtained as

Vv Vin
Lo = ﬂzl,n =on=234
Vi—-Va Vio — Vo
Lovi = : v v = ———. 6
1 X 2 X (6)

The power balance equations are then

Livi—TLipo-T1i3-I;4=0
Vio (Iz,z + Ii*nvz) + (chn + ngcn) =0
VisIi 3 — (Pra +jQr3) =0
Viadiy — (Pra+jQra) =0 (7

where asterisk denotes complex conjugate.

Based on the time-scale separation principle [30], the dy-
namics associated with the power electronics, which are on the
order of milliseconds, are neglected when compared to the time
scales of interest in this study, i.e., seconds.
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B. Modeling the Power Sources and Loads

The drop in solar power (due to weather, malfunction, attack,
etc.) is assumed to happen instantaneously and is thus modeled
as a “worst case” step change as described by

Pl t<t
P ! (t) — { solar — . (8)
o Ps201ar t> tl

Based on the time constants reported in the literature for small
diesel generators [31], the generator is assumed to have first
order dynamics as given by

1

Pyon = — (PR — Pyen) ©®)

Tgen

with a discussion of P4;" provided in Section III-C.

The battery is modeled as a voltage source with an internal
resistance. Within the time scale of interest (i.e., seconds), the
change in the state-of-charge (SoC) is assumed to be negli-
gible, and thus the SoC dependence of the open-circuit voltage
(OCYV) of the battery is neglected along with any other battery
dynamics. We assume a string of batteries in series so that the
nominal Voev at 50% charge is equal to the nominal DC bus
voltage V},,se. The battery is represented using the following re-
lationship:

V™ = Voev — RbareJinv. (10)
where T, is given by (2h), and is considered positive when the
battery is discharging.

Finally, the loads are modeled as constant because they are
assumed to be critical loads that need to be supplied continu-
ously.

C. Power Control Structure

Within the considered framework, the only components
whose power setpoints need to be managed are the vehicle bat-
tery and generator. The following feedback forms are proposed:

Psge(;n = — klep - kla (Pgen - P(f’;n)
— klI /wpdt + Pf’;n

batt . batt
PR = — kypuw, + P2

set (1 1 )
where P, represents the pre-disturbance operating point.
Note that the first terms on the right hand side of the equa-
tions correspond to the traditional droop control scheme [1], [6],
[32]-[35]. The second and third terms in the generator controller
provide secondary frequency control with a PI control strategy.
However, there is a minor difference from the typical PI control
approach [36] in the sense that the P and I control actions act on
two separate variables. Specifically, the second term in the gen-
erator controller adds a proportional feedback from the actual
power output. This helps delay the response of the generator. A
disturbance will then initially be compensated for mainly by the
battery, helping save fuel. However, the battery cannot compen-
sate for a large disturbance indefinitely due to its limited energy
capacity. Hence, the generator controller also includes an inte-
gral action on the frequency deviation, so that any disturbance is
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ultimately compensated for entirely by the generator. This con-
trol scheme ensures that in the post-disturbance steady state the
frequency deviation is zero, thereby enabling the battery to re-
turn to its original operating condition, whereas the generator
power output settles to

kir

Pgen = P(%I:n I a— /wpdt

12
T+ (12)

It is assumed that a higher-level dispatch controller exists that
will eventually be informed about the disturbance and will de-
termine the new (optimal) operating conditions for the generator
and battery.

Also note the decentralized character of the controllers in
(11). The only common signal to the controllers is the frequency
deviation wy,; the controllers are otherwise independent, use
only the locally available information (i.e., frequency and local
power), and do not require any communication with each other
or any other component in the microgrid.

D. Model Parameterization and Control Design

The microgrid system described above was simulated and op-
timized for the parameter values given in Table I. The parame-
ters (and later results) that are given in the per-unit system can
be converted to their absolute values using the base values re-
ported in Table I. The parameter values for the inverter grid in-
terface and inverter control gains are taken from [24]. The loads,
step change in solar power, and the operating points for the bat-
tery and generator are obtained from a worst-case scenario of
the optimal sizing and dispatch study as described in Section II.
The maximum allowed frequency and voltage deviations were
set to 0.5 Hz and 5%, respectively. The power regulation gains
were tuned by linearizing the model around the given operating
point and numerically solving an LQR problem with a constraint
on frequency deviation and limits on the extent to which the
power setpoints of the generator and battery could be moved. A
further constraint ensures that the battery returns to its original
state within 170 s to avoid draining the battery with subsequent
energy extractions. The constraints were included with a large
penalty in the optimization problem. Specifically, the objective
function was formulated as

T
J= / (27 Qx + v Ru + Chig(x,1))dt (13)
Jo

with

Chim (2, 1) = wi(max(|z1| — 21,1im, 0))*
+ wo(max(u1 — 1 fim. ()))2
+ wy(max(|us| — uz tim, 0))?
+ uqu%l(t — 170),

0 ift<O
1(t) = { ‘
) 1 else )
R

U2 = Psl:;tt - Pr,t}?tty
where w; are the weights, and X1 iy, %1 i, and g g, are
the limits on frequency deviation, generator power, and battery
power respectively. The resulting optimization problem was
solved with an unconstrained nonlinear programming solver.
The weights w; were set equal, and progressively increased to
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TABLE I
MODEL PARAMETERS
Parameter Value Parameter Value
K, 10 R, R R, 0.008 pu
K, 20 X2 X135 X4 0.004 pu
K, 20 P 7.949 pu
K, 10 1/s P 2.97 pu
X 0.05 pu B 10 kVA
Via 1 pu Vi 110V
PI,R 3 pu V;:‘“” E V;)CV 480 V
P, 342 pu kyp 0.086
0.0 0 ki 16016
= 12 pu ky 0.143
e 0 kap 18
z.gcn l S tl 1 S
P ~1.285 pu

a value of 10° in accordance with standard penalty function
methods [37].

During the control design, the battery internal resistance was
neglected and the battery was assumed to be a constant voltage
source. Hence, voltage constraints were also neglected in the
constrained LQR formulation.

IV. REGULATION RESULTS AND DISCUSSION

The dynamic performance of the microgrid was explored by
introducing a step change in the solar power production, as
modeled by (8) with pre- and post-disturbance levels given in
Table I. Figs. 7 and 8 show the frequency and voltage regu-
lation performance of the controller. In these figures, the non-
linear microgrid model was used; however, the battery voltage
was assumed to be constant to show the nominal performance of
the controller. As the figures illustrate, both the frequency and
voltage can be regulated successfully within the desired limits
for this idealized battery voltage behavior.

Fig. 9 shows the battery and generator power trajectories
during the disturbance. Initially the microgrid is stabilized
using mainly the battery. Gradually the generator power is
increased and, due to the integral action in the generator control
scheme (11), the generator completely compensates for the
solar power loss in the post-disturbance steady state, allowing
the battery to return to its original charging state.

To check the impact of the constant battery voltage assump-
tion on performance, the simulation was repeated with the bat-
tery internal resistance modeled with values varying from 0.1 to
1 €2, inincrements of 0.1 £2. Fig. 10 shows the voltage regulation
performance of the controller for select values of Ry,.t¢. Voltage
constraint violations occur at terminal 4 for Rp.:: > 0.3 2. Vi-
olations at other terminals are also observed for higher values of
Rypatt. The corresponding battery voltages are shown in Fig. 11.
The frequency regulation performance is not affected signifi-
cantly by the range of Ry,,t¢ values considered and thus the cor-
responding plot is not shown.

The voltage sensitivity displayed in Fig. 10 can be explained
by considering the power balance across the microgrid. Because
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imum allowed deviation limits.

the loads draw constant power, the total power supplied by the
various sources must also remain effectively constant, though
with some adjustment to account for changes in network losses.
Therefore, when the solar power output reduces, the battery
must take up the difference. This is not a controlled response,
but rather a consequence of the power balance inherent in sat-
isfying Kirchhoff’s laws. With battery internal resistance mod-
eled, this sudden increase in the power delivered from the bat-
tery will cause a sharp decrease in the battery terminal voltage.
This is apparent in Fig. 11. Controls quickly respond to restore
the microgrid AC voltages though, as shown in Fig. 10.
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Fig. 13. Voltage regulation performance for Rp.ce = 1 Q and Ky = 10
(light) versus 'y = 200 (dark). Dashed lines represent the maximum allowed
deviation limits.

The battery power needed to ensure satisfactory recovery
from the loss of solar power is around 40 kW (Fig. 9). The
maximum theoretical battery power available is

72
— ‘/OCV

Pbatt
4Rl)att

max

which gives PPt = 57.6 KW for Rp.i. = 1 €. Hence, the
battery is capable of providing the power needed, but cannot
maintain the terminal voltages within desired limits.

The high sensitivity of voltage and low sensitivity of fre-
quency to battery voltage fluctuations may seem to indicate that
the voltage and frequency regulation problems are decoupled,
implying the voltage control gain K; of the inverters may be
increased to reduce the sensitivity of the voltages without af-
fecting frequency regulation performance. However, Figs. 12
and 13 illustrate that this is not necessarily the case. These fig-
ures compare the regulation performance for the original value
of K1 = 10 and for a high gain of K; = 200. In both cases
Ry, was set to 1 Q. The higher controller gain greatly im-
proves the voltage regulation performance and all terminal volt-
ages are well within the desired limits. However, the frequency
constraint is violated. To understand this frequency excursion,
recall that the inverter control design, given by (2) and (11),
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introduces a droop characteristic that inversely couples power
output and frequency!. The higher gain K; = 200 causes a
higher overshoot in the power output than was the case with
K1 = 10. This larger power overshoot causes frequency to tran-
siently undershoot its allowable limit, as shown in Fig. 12.

Therefore, it is critical to consider the voltage-current charac-
teristics of the battery carefully and compensate for undesirable
voltage drops either in the control design (e.g., by taking the bat-
tery characteristics into account and considering both frequency
and voltage regulation together), or in the battery design (e.g.,
by changing battery chemistry, increasing battery size, and/or
adding capacitors in parallel). The next section further considers
the latter option, and in doing so closes the loop between the reg-
ulation and component sizing problems.

V. IMPLICATIONS FOR COMPONENT SIZING

The simulations presented in Section IV have been performed
without considering any particular battery chemistry. However,
in practice, the battery chemistry and configuration, i.e., number
of battery cells in series and parallel, will dictate the internal re-
sistance of the battery pack. The chemistry and configuration
will also determine the energy capacity of the battery. Hence,
it is of interest to study the extent to which regulation consid-
erations can impact the energy capacity, i.e., the sizing, of the
battery. This section considers the original inverter and setpoint
control designs of Section III-D. Under that condition, Fig. 11
showed that a battery with Rp..: = 0.1 © yields satisfactory
regulation performance.

As arepresentative battery for hybrid electric vehicle applica-
tions, an 11.1 V (3-cell) SAh Li-polymer battery is considered.
The internal resistance of such a battery has been identified as
48.3 m{} [38]. To achieve a 480 V DC voltage supply for the in-
verter, 44 of these batteries should be connected in series. Fur-
thermore, to achieve the 8.4 kWh battery capacity required by
the optimal sizing solution mentioned in Section II, 4 parallel
connections are required. This brings the capacity of the battery
pack to 9.8 kWh.

On the other hand, with 44 series and 4 parallel connections,
the total equivalent internal resistance of the battery pack is
0.53 Q. This is above the desired value of 0.1 €2 and in the
range that leads to undesired voltage fluctuations as shown in
Fig. 11. To bring the battery internal resistance down to 0.1 €2,
the number of parallel connections needs to be increased to
22, which in turn implies that the battery size increases from
9.8 kWh to 53.7 kWh.

This example highlights an important coupling between the
component sizing and regulation problems. It shows that an op-
timal sizing study that considers only the energy capacity of the
battery, e.g., [17]-[19], [22], [23], can potentially undersize the
battery.

This undersizing issue is not only important for the battery,
but also for the sizing of other components in the microgrid.
As an example, if the 53.7 kWh minimum battery size is in-
troduced into the optimization framework of Section II as an
additional constraint, the solar panel size reduces from 89 kW
to 87 kW to partially offset the increased capital cost of the
batteries. Moreover, the annualized capital cost increases from

IBecause inverter-based microgrids do not have synchronous generation,
there is no natural relationship between frequency and power balance. This
familiar behavior must be established by control action.
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TABLE II
COMPARISON OF OPTIMAL SIZING WITH AND WITHOUT REGULATION
CONSTRAINT

Optimal sizing
without regulation

Optimal sizing
with regulation

constraint constraint
Solar panel size 89 kW 87 kW
Battery capacity 8.4 kWh 57.2 kWh
Capital cost $91,500 $94,100
(annualized)
Fuel use (annual) 143.8 kL 146.1 kL

$91 500 to $94 100, and the annual fuel use is estimated to in-
crease from 143.8 kL to 146.1 kL. These results are summarized
in Table II. The increased fuel use is due to the reduced solar
panel power, showing a tradeoff of meeting the regulation re-
quirements.

It is important to re-emphasize that these results are presented
as an illustration rather than an ultimate solution. For example,
the dynamics of the battery have been neglected for simplicity,
including the dependence of OCV on SoC. While this may be
an appropriate assumption over the short time scale of interest
in this paper, the dependence of OCV on SoC could be a signif-
icant factor in other circumstances. If so, it would be important
to consider the battery chemistry, as different types of batteries
have different OCV-SoC characteristics. For chemistries such
as Li-ion, the OCV-SoC curve is quite flat in the normal op-
erating region, i.e., the OCV is rather insensitive to changes in
SoC. In such cases, it would be reasonable to expect that regula-
tion capability is similarly insensitive to SoC. Other chemistries
may display a more pronounced dependence of OCV on SoC
that could affect the regulation capability.

Other types of storage could also be considered, for example
using capacitors to augment or replace the batteries. However,
such analysis is beyond the scope of this paper and is left as
future work. To reiterate, the main goal of this paper has been
to identify the regulation-sizing coupling, emphasize its impor-
tance, and highlight the need for an integrated design approach
of the form proposed in the paper. Hence, the particular solution
considered in this section, that of increasing the battery size, is
not to be interpreted as the only or optimal solution.

VI. SUMMARY AND CONCLUSION

The paper considered a conceptual military microgrid that op-
erates autonomously, i.e., without connection to a larger power
grid. A solar panel, along with vehicle batteries and genera-
tors provide the power, while loads are assumed to be constant
and uncontrollable. Leveraging a decentralized, phase-locked-
loop based inverter control strategy, this paper has considered
a power setpoint control algorithm for the batteries and gen-
erators. The controller is tuned assuming the battery voltage is
constant. The impact of this assumption is tested by considering
a range of values for the battery internal resistance.

The results show that the battery internal resistance can af-
fect the performance of both frequency and voltage regulation.
Thus, an effective inverter-based control design framework
should consider both regulation problems together, as well as
the voltage-current characteristics of the DC sources.
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The results further illustrate the impact of regulation consid-
erations on the sizing of the components in the microgrid. This
is illustrated by considering an increase in the battery size as
one potential solution. Hence, an important coupling between
the component sizing and regulation problems is shown. This
coupling implies that the typical approach, where the two prob-
lems are considered separately due to their disparate time scales,
may lead to unsatisfactory designs. It is concluded that micro-
grid sizing, dispatch, and regulation problems should be consid-
ered concurrently using an integrated design framework.
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