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ABSTRACT
Open-Circuit-Voltage (OCV) is an essential part of battery

models for state-of-charge (SOC) estimation. In this paper, we
propose a new parametric OCV model, which considers the stag-
ing phenomenon during the lithium intercalation/deintercalation
process. Results show that the new parametric model improves
SOC estimation accuracy compared to other existing OCV mod-
els. Moreover, the model is shown to be suitable and effective
for battery state-of-health monitoring. In particular, the new
OCV model can be used for incremental capacity analysis (ICA),
which reveals important information on the cell behavior associ-
ated with its electrochemical properties and aging status.

INTRODUCTION
With the widespread use of lithium-ion batteries for energy

storage, the development of reliable and efficient battery man-
agement systems (BMS) has become a crucial task [1–3]. Two
important functions of BMS are the state-of-charge (SOC) es-
timation and state-of-health (SOH) determination [4, 5]. SOC
is commonly defined as “the percentage of the maximum possi-
ble charge that is present inside a rechargeable battery” (in this
study, SOC is defined with respect to the current total capacity),
and SOH is “a ‘measure’ that reflects the general condition of
a battery and its ability to deliver the specified performance in
comparison with a fresh battery” [6]. Typically, the quantitative
definition of SOH is based either on the battery capacity or the
internal resistance, depending on specific applications.

The on-line estimation of battery SOC has been studied ex-

∗Address all correspondence to this author.

tensively in literature (see Ref. [7] and references therein). Most
of those methods, including the extended Kalman filter (EKF)
approach [8–10], require an accurate open-circuit-voltage (OCV)
model which relates OCV to SOC [7, 11, 12]. The OCV-SOC
function is implemented either as a look-up table or an analyti-
cal expression, while the latter has several advantages including
computational efficiency (since no interpolation is needed) and
ease for analysis [13].

Several analytical OCV models proposed in the literature
are summarized in Ref. [13]. Those are phenomenological
models built with curve fitting without considering the com-
plex battery physical behavior during the lithium-ion intercalac-
tion/deintercalation process [14,15]. However, as reported in our
previous work [5], the OCV data obtained from the galvanostatic
charging/discharging of batteries at low C rate displays voltage
plateaus and transitions (please see the voltage curve plotted in
Fig. 1) that correspond to the staging phenomenon at the graphite
anode [5, 16–19]. Without proper parametrization, this critical
phenomenon is usually lost when the OCV data is fitted with
those existing models. At the same time, because of the wide flat
region on the OCV-SOC curve, a small mismatch in OCV fitting
may cause a large deviation when used for SOC estimation.

Moreover, OCV data often reflect battery aging and perfor-
mance degradation [20]. Using the so-called incremental capac-
ity analysis (ICA) technique [16, 21], which differentiates the
battery charged capacity (Q) with respect to the terminal voltage
(V ) and transforms voltage plateaus on the V -Q (voltage-charged
versus capacity) curve into clearly identifiable dQ/dV peaks on
the incremental capacity (IC) curve (see Fig. 1), gradual changes
in cell behavior can be detected, based on life cycle test data,
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Figure 1. ICA PERFORMED ON CHARGING VOLTAGE CURVE AT 1
20

C RATE

with greater sensitivity than those based on conventional meth-
ods [22]. One major challenge in ICA for battery aging analysis
is its sensitivity to measurement noise. Since all the peaks on an
IC curve lie within the flat region of the OCV curve, computing
the derivatives directly from the data set often leads to inaccurate
and undesirable results, even after careful data filtering. By de-
signing an OCV model that captures those voltage plateaus and
the subtle transitions over the flat region, one can perform ICA
without using numerical derivative to study battery performance,
thereby revealing useful information associated with its electro-
chemical properties and aging status [22, 23]. Therefore, for the
purposes of both SOC estimation and SOH monitoring through
ICA, an OCV model that can capture the underlying physical
process over the flat region and be capable of supporting ICA is
needed.

In this paper, we propose a new parametric OCV model for
lithium-ion batteries that considers the staging phenomenon dur-
ing the lithium intercalation/deintercalation process. The model
is intended for both SOC estimation and SOH monitoring. The
study is based on a battery life cycle test data set collected from
eight different A123 LiFePO4 cells over a period of 18 months.

The remainder of this paper is organized as follows. First,
the development and parametrization of the new OCV model is
proposed. Then we compare the new OCV model with other
existing models in terms of OCV data fitting and SOC estimation
accuracy. After that we elucidate the application of the new OCV
model for SOH monitoring, followed by the conclusions.

A NEW OPEN-CIRCUIT-VOLTAGE MODEL
We propose a new OCV model structure that can capture

the lithium-ion intercalaction/deintercalation process while fit-
ting the OCV-SOC data. Instead of measuring the OCV after a
long relaxation period at different SOC levels that span the en-

tire operating range, the data used for the development of the our
OCV model are collected by charging/discharging a LiFePO4
battery cell at 1

20 C rate. The upper and lower cut-off voltage
limits are 3.6V and 2.1V respectively.

The total charge stored between the upper and lower limits
is defined as the battery total capacity. The voltage data obtained
by slow charging/discharging reflects the OCV at a close-to-
equilibrium status [21]. Although the close-to-equilibrium OCV
curve shown in Fig. 2 may be affected by hysteresis and diffu-
sion voltage due to lack of relaxation, it can sufficiently represent
the generic electrochemical properties that can be used for ICA
and quantifying capacity fading as presented in Ref. [21]. For fu-
ture studies, more accurately measured OCV data may be used,
and close-to-equilibrium OCV data collected at different current
rates may be compared.

Parametrization
Based on the studies presented in Refs. [5, 16, 21], there are

mainly three observable voltage plateaus and two transitions over
the flat area on the OCV curve of LiFePO4 battery cells. In our
model, those nonlinear characteristics are captured by the fol-
lowing sigmoid functions,

OCV (z) =K0 +K1
1

1+ eα1(z−β1)
+K2

1
1+ eα2(z−β2)

+K3
1

1+ eα3(z−1) +K4
1

1+ eα4z +K5z
(1)

where z is the SOC, K0∼5 are the linear parameters, and α1∼4
and β1∼2 are the nonlinear parameters. This parametrization
shares some common features with the electrochemical model of
LiFePO4 proposed in Ref. [15]. More specifically, our model can
be interpreted as a reduced-order composition and generalization
of the cathode and anode OCV functions in Ref. [15] (where hy-
perbolic and exponential functions are used).

As shown in Fig. 2, the collected charging/discharging data
are averaged and fitted with OCV model in Eq. (1). The param-
eters are determined using the Matlab curve fitting toolbox. The
root mean square (rms) value of the fitting error is 2.3mV . Since
in practice most of the battery operations are in the middle SOC
range, we may focus the fitting over SOC from 10% to 90% so
that the model accuracy could be further improved by excluding
the highly nonlinear area at both high and low SOC regimes. The
corresponding results are plotted in Fig. 3, where the rms value
of the fitting error is reduced to 1mV and the maximum fitting
error is less than 2.5mV .

Comparison with Existing Models
The data fitting accuracy of our new OCV model is com-

pared with the five different models summarized in Ref. [13],
where the polynomial model is reported to be the most accu-
rate. Those models are reorganized and listed in Tab. 1. For
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Figure 2. FITTING RESULT WITH THE PROPOSED OCV MODEL
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Figure 3. OCV MODEL FITTED OVER SOC FROM 10% to 90%

our own comparison, the OCV data presented in Fig. 3 is then
fitted with those models using Matlab curve fitting toolbox, and
the results with their rms errors and maximum errors are shown
and summarized in Fig. 4 and Tab. 2. One can see that the new
OCV model proposed in Eq. 1 has better fitting accuracy than all
those five models. Consequently, by incorporating the new OCV
model, improvement in the SOC estimation results may also be
expected.

It should be noted that none of the other five OCV models
listed in Tab. 1 is suitable for IC analysis. A plot of IC curves
based on different OCV fitting results is shown in Fig. 5. It can
be observed that the new model (model #6) can capture the two
IC peaks associated with staging whereas all other models only
show one peak in the IC curves. Therefore, model #6 can extract
more aging information from the OCV data compared to other

Table 1. OCV MODELS SUMMARIZED IN REF. [13] TOGETHER WITH
THE NEW MODEL

# OCV Models Ref.

1 OCV (z) = K0 − K1
z −K2z+K3 ln(z)+K4 ln(1− z) [9]

2 OCV (z) = K0 +K1(1− e−α1z)+K2(1− e−
α2
1−z )+K3z [24]

3 OCV (z) = K0 +K1e−α1(1−z)− K2
z [25]

4 OCV (z) = K0 +K1e−α1z +K2z+K3z2 +K4z3 [26]

5 OCV (z) = K0 +K1z+K2z2 +K3z3 +K4z4 +K5z5 +K6z6 [27]

6 OCV (z) = K0 +K1
1

1+eα1(z−β1)
+K2

1
1+eα2(z−β2)

Proposed

+K3
1

1+eα3(z−1) +K4
1

1+eα4z +K5z model
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Figure 4. COMPARISON OF OCV FITTING RESULTS

models and will be used for further analysis in SOH monitoring.
For models #2 and #5, dQ/dV is not defined at 3.35 volt because
of a singularity in the math expression. Consequently, spikes in
both directions are shown in Figure 5 for those two models’ IC
curves.

STATE-OF-CHARGE ESTIMATION BASED ON EX-
TENDED KALMAN FILTER

The extended Kalman filter (EKF) based approach discussed
in Ref. [10] is used to illustrate the implementation of the new
OCV model in SOC estimation. The battery test data for this
study is collected through the experimental set-up introduced in
Ref. [28] and the first-order RC model is used for the estimation
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Table 2. FITTING RESULTS OF OCV MODELS FROM TAB. 1

Model # RMS Error (mV) Max Error (mV)

1 5.2 12.6

2 3.1 8.9

3 5.6 21.3

4 4.7 12.7

5 2.1 7.3
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Figure 5. COMPARISON OF IC CURVES FROM FITTED OCV

as follows,

zk+1 = zk − (
ηi∆t
Qc

)Ik,

Vrc,k+1 = exp(
−∆t
R1C

)Vrc,k +R1[1− exp(
−∆t
R1C

)]Ik

Vk = OCV (zk)+Vrc,k +R0Ik

(2)

where zk is the SOC, ηi is the charging/discharing efficiency, ∆t
is the time step, Qc is the battery capacity, Ik is the input current,
Vk is the total terminal voltage, Vrc,k is voltage of the RC circuit,
R0, R1 and C are battery internal resistance and capacitance [28].
The OCV function is represented by the model proposed in Eq.
(1). The first-order RC model is used here for simplicity, as the
model accuracy in SOC estimation has been shown in [28]. One
can certainly improve the results further by using other models
with higher orders at the expense of additional computation and
complexity.

In this study, all the parameters in the RC model are set to
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Figure 6. BATTERY DATA TESTED UNDER FUDS

be constants without performing iterative optimizations as dis-
cussed in Ref. [13].

The battery data tested under the Federal Urban Driving
Schedule (FUDS) is shown in 6. Same as in Ref. [10], the SOC
data obtained by Coulomb counting in the Arbin battery test
bench, where high precision current sensor is used, is assumed to
be the “true” SOC and used as a reference for performance eval-
uation. Therefore the SOC estimation error is defined as follows,

eSOC = SOCest −SOCdata (3)

where eSOC is the SOC estimation error, SOCest is the SOC esti-
mated by the EKF algorithm and SOCdata is the reference SOC
calculated from the measured data shown in Fig. 6. Please note
that the SOC from Arbin Coulomb counting, while representing
the best reference that we can get, is only approximately accurate
due to the unavoidable error accumulation in Coulomb count-
ing [10].

The model parameters used in the EKF based SOC estima-
tion are shown in Tab. 3.

A detailed description of the EKF algorithm can be found
in both Refs. [10] and [13]. The parameters of the EKF are cal-
ibrated by trial and error using the data collected in our aging
tests, and exactly same parameters (listed in Tab. 4) are used in
the following study for models #5 and #6.

Figure 7 displays the EKF based SOC estimation results
with the new model #6 and the polynomial model #5. The two
plots represent two cases with different initial SOC error (+10%
and -10% respectively). One can see that the estimated SOC with
both models converges into the 5% estimation error band, which

4 Copyright © 2013 by ASME



Table 3. PARAMETERS OF MODELS #5 and #6 IN SOC ESTIMATION

Model Parameters Model #5 Model #6

K0 3.0896 3.4002

K1 1.1627 0.0080

K2 -2.3821 0.0785

K3 2.1870 -0.2150

K4 -0.5444 -1.3032

K5 -0.1939 0.0891

K6 0.0582 N/A

α1 N/A -14

α2 N/A -18

α3 N/A 28

α4 N/A 40

Table 4. PARAMETERS OF EKF BASED SOC ESTIMATOR

Parameters Values

Error covariance of process noises, Q

0.15 0

0 1



Error covariance of observation noises, V 0.01

are considered to be acceptable SOC estimation accuracy [13]. In
particular, with positive initial error, the SOC estimated with the
new model converges much faster than the SOC estimated with
the polynomial model. This difference in convergence rate with
positive initial error can be explained by the curve fitting results
shown in Figs. 3 and 4, where model #6 have better accuracy
than #5 in the high SOC region. On the other hand, both models
have approximately the same accuracy when SOC is below 70%
and therefore have similar convergence rate with negative initial
error. Please note that the 5% error bound can be achieved with
other initial error (e.g., 20% or 30%).

In summary, the new OCV model performs well when used
in EKF based SOC estimation. Without extensive calibration
and training, the model still delivers an accurate estimation re-
sult with less than 5% errors. The results presented in this sec-
tion demonstrates the potential of implementing this new OCV
model for SOC estimation problems.
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Figure 7. COMPARISON OF SOC ESTIMATION ERROR
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STATE-OF-HEALTH MONITORING BASED ON INCRE-
MENTAL CAPACITY ANALYSIS

In addition to its advantage in SOC estimation, the potential
of the new model in SOH monitoring will be illustrated within
the ICA framework. Moreover, it will be shown that the pro-
posed parametrization can be used to capture the intercalation
process with both OCV data and normal charging data. Even
though ICA was originally proposed for “close-to-equilibrium”
conditions, it was shown in Ref. [5] that the peaks on the IC
curve can also be identified with normal charging data. Hence,
the results presented in this section for ICA are all based on 1

2 C
battery charging data (same as in Ref. [5]).

As shown in Fig. 8, where the charging data is fitted with the
model given by Eq. (1) with OCV replaced by the terminal volt-
age, we can obtain the IC curve directly by taking the reciprocal

5 Copyright © 2013 by ASME
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Figure 9. IC CURVES OF DATA AT DIFFERENT AGES
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Figure 10. IC CURVES COMPARISON FROM FOUR DIFFERENT
CELLS

after differentiating the analytical V-SOC function.

Incremental Capacity Analysis at Different Aging
Stages

The IC curves of battery charging data collected at different
aging cycles under 35oC environment are shown in Fig. 9. The
numerical values in the plot legends represent the aging cycle
number. The IC peaks in the circled area in Fig. 9 clearly shows a
monotonic decreasing trend, which implies a battery degradation
that is mainly related to the loss of active material at the graphite
anode [16, 21].

The IC curves from four different A123 LiFePO4 cells are
plotted in Fig. 10, where only the second peaks correlated to ag-
ing are shown for comparison. The curves show that the aging
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phenomenon identified from IC peak changes is common for the
batteries tested in our experiment. Those peak values are then
quantified and correlated with the faded cell capacity in Fig. 11.
The close correlation between the cell capacity fading and IC
peak revealed by the new parametric model in the form of Eq.
(1) can therefore be used for battery SOH monitoring. More-
over, even though the quantitative relation identified in this work
have not been demonstrated to work on other types of cells, we
believe that the procedure and approaches reported in this paper
are general and should be applicable to many other Li-ion battery
systems.
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Incremental Capacity Analysis at Different Tempera-
ture

Test data were also collected at different temperature
throughout battery aging process. ICA was performed with re-
spect to different temperature to evaluate and confirm the sensi-
tivity to temperature and results are presented in Fig. 12. The in-
tensities of the IC peaks reduce as temperature drops, which may
be attributed to the slow lithium-ion diffusion or lithium plat-
ing phenomenon at low temperature as elucidated in Ref. [29].
When the temperature is too low, say at 10oC, the second peak
could disappear from the IC curve.

Figure 13 presents the IC curves at different temperature and
different aging stages. A temperature dependence of the IC peaks
and the model parameters may be evaluated. The first peak on
these four plots shows consistent temperature sensitivity while
the second peak shows the aging status. The test data corre-
sponding to higher temperature will be more reliable for ICA
and capacity fading identification.

Summary of the Comparisons

The two comparisons of IC curves obtained from the new
OCV parametric model illustrates the utility of the model in
the analysis of battery SOH from the electrochemical perspec-
tive. Compared to those data analysis approaches discussed in
Ref. [5], this parametric model based method is more straight-
forward and easier for implementation. ICA can be performed
without extra data processing other than the curve fitting. There-
fore the potential application of this model is not limited to SOC
estimation, it is also a convenient tool for studying battery aging
and performance degradation.

CONCLUSIONS
In this paper, we propose a new OCV parametric model,

which considers the staging phenomenon during the lithium in-
tercalation/deintercalation process in selecting the parametric
form, for lithium-ion batteries. The special parametrization not
only leads to better fitting accuracy when applied to experimental
battery OCV data compared to existing models, but also yields
natural IC characteristics that other models fail to represent. The
new parametric model is applied, together with an EKF, to SOC
estimation and its effectiveness is demonstrated on FUDS cycle
data. Moreover, we show that the parametric model can also be
applied for ICA based SOH monitoring. Through comparisons
of IC curves, the model is shown to be capable of capturing bat-
tery cell’s electrochemical properties at different operating tem-
perature conditions and aging stages. Future research will in-
vestigate the sensitivity and robustness of the proposed model
structure. A hybrid model that combines the simpler models
(i.e., #1 ∼ 5) and the proposed model #6 may be explored for
further improvement of the ICA results. Efforts will also be di-
rected towards characterizing the correlations between the model
parameters and the degradation of battery performance, and de-
veloping more efficient algorithms for the determination of the
OCV model parameters.
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