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Abstract—Significant synergy exists between plug-in electric ve-
hicles (PEVs) and wind energy: PEVs can be the demand response
to mitigate the intermittent wind power outputs, and wind energy
can provide low-carbon electricity to PEVs. This paper presents
a hierarchical control algorithm to realize this synergy by inte-
grating the PEV charging and wind power scheduling. The control
algorithm consists of three levels: the top-level controller optimizes
the scheduling for the conventional power plants and wind power;
the middle-level controller plans PEV charging to achieve load fol-
lowing based on the battery state of charge and plug-off time of
each vehicle; the bottom-level controller uses grid electricity fre-
quency as the feedback cue to control PEV charging and serves as
the ancillary service to the grid. Numerical simulations show that
the integrated controller can improve the grid frequency regula-
tion and overall electricity generation cost without sacrificing the
PEVs charging completion.

Index Terms—Charging of electric vehicles, electricity grid, grid
integration, plug-in electric vehicles, smart grid, wind energy.

I. INTRODUCTION

P LUG-IN electric vehicles (PEVs) and wind energy are
both green technologies capable of reducing the use of

fossil fuels, and, due to the aggressive goals to reduce green-
house gas emissions and carbon footprints around the world,
they are expected to grow quickly in the next decades. How-
ever, accommodating large number of PEVs and wind energy
sources poses challenges to the electricity grid because of the
increased load from PEV charging and intermittency from wind
power. Fortunately, there is significant synergy between PEVs
and wind power [1], [2], but few studies to take advantage of
this synergy were reported. This paper intends to bridge the gap
by proposing a control algorithm to integrate PEV charging and
wind power scheduling.
Charging a large number of PEVs without mitigation will

negatively impact the electricity grid [3], [4]. However, the de-
ployment of advanced metering and charging systems makes it
possible to control the timing and rate of PEV charging. In addi-
tion, PEVs often have the dwell time (stay parked) longer than
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the time needed to fully charge their batteries, which provides
control algorithms some degree of freedom to delay or manip-
ulate the charging.
Controlling PEV charging is more challenging than man-

aging existing grid load in that both the charging timing
(service timing) and charging rate (service quantity) are control
variables, which current demand-side management or service
provisioning schemes rarely address simultaneously. For ex-
ample, resource allocation methods [5]–[7] only address the
service quantity, whereas scheduling [8] and queuing theory
[9]–[11] only address the timing. In addition, these methods
are highly centralized, which limits themselves to be used on
large PEV fleets. Hierarchical and partially-decentralized algo-
rithms are believed to be more appropriate for PEV charging
[12]. For schemes specific to PEV charging, the dual tariff
(cheaper electricity rate in the valley hours) is currently of-
fered by several electricity distribution companies [13], [14].
Rule-based charging schemes are used to analyze PEVs’ im-
pact on the grid generation mix and carbon emissions [3], [15].
Cost optimization has been able to achieve valley filling [16].
Co-optimization for costs of electricity and heating service
[17] and using idle PEVs as grid reserves [18] have also been
proposed. However, rule-based approaches do not exploit the
full potential of the controllable PEV charging whereas cost
optimizations are usually solved off-line without providing
implementable real-time control laws, with [19] being a notable
exception.
Wind power is cleaner than most traditional power sources,

but its intermittency has been a concern to grid reliability. Al-
though aggregating outputs of multiple turbines or wind farms
help to smooth the fluctuations [20], the grid operator may still
need to procure more reserves for the wind intermittency [21],
which can cost $0.45–$8.84/MWh [22].
Researchers are tackling the wind intermittency in various

ways. Some research efforts have focused on reducing predic-
tion error of wind power to assist grid operations [23]. An-
other research direction focuses on developing strategies for
scheduling generation sources. Several studies included wind
energy probabilities when conducting optimizations for gener-
ation scheduling [24]–[27]. Bidding strategy to maximize the
profit for the wind energy producer (not the whole grid) was
also proposed [28]. Fuzzy logic has been used as a scheduling
scheme as well [29]. Despite of the improvement achieved by
the above methods, curtailment of wind power will still happen
because the current electricity grid has very little energy storage
capacity.
The literature has addressed the PEV charging or wind inter-

mittency on the electricity grid. Their integration is attracting
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Fig. 1. Distributions of the plug-in time, plug-off time, and trip length [31].
The distribution of trip length is used to derive .

increasing attention because of the significant synergy between
them. The PEV charging power can be throttled back and forth
to cancel the intermittency in wind energy, and wind energy can
provide clean electricity to PEVs. This paper proposes a three-
level hierarchical control algorithm to achieve such integration.
The top-level controller optimizes the scheduling for the conven-
tional power plants and wind power to minimize the electricity
generation cost; the middle-level controller plans PEV charging
to achieve load following based on the battery state of charge and
plug-off time of each vehicle; the bottom-level controller uses
grid electricity frequency as the feedback cue to control PEV
charging and serves as the ancillary service to the grid. This con-
trol algorithm is an extension of the algorithms in [19] and [30],
which can fully exploit the synergy between PEV and wind en-
ergy to achieve multiple objectives on the electricity grid.
The remainder of this paper is organized as follows: Section II

describes models of the PEV fleet, wind power, and the elec-
tricity grid; Section III presents the three-level hierarchical con-
trol algorithm; Section IV shows simulation results of the con-
troller on a state-wide electricity grid; and Section V provides
concluding remarks.

II. MODELING

Several models are developed to describe system-level dy-
namics of the PEV fleet, wind power, and electricity grid using
statistics in the State of Michigan. In addition, PEVs and wind
energy are assumed to have acquired sizable market shares, so
they have significant influence on the demand, supply, and reli-
ability of the electricity grid.

A. Plug-In Electric Vehicle Fleet

The total number of PEVs is assumed to be two million,
which corresponds to 25% of the vehicle fleet in Michigan. All
PEVs are assumed to use smart chargers and thus controllable.
The PEV fleet is characterized by the plug-in time, the plug-off
time, and the state of charge (SOC) of the battery at plug-in.
The SOC quantifies the energy requirement to fully charge all
PEVs so that the grid operator can schedule appropriate power
generation to accommodate the PEV charging need, and the
plug-in/plug-off time prioritizes the PEV fleet and determines
which vehicle receives immediate or delayed charging service.
The data in [31], shown in Fig. 1, is used to derive the three
pieces of information.
Assuming that charging only happens at home, the arrival

time is treated as the plug-in time, and the departure time as
the plug-off time. The trip length is used to derive the SOC

Fig. 2. A 48-h snapshot of the NREL eastern wind dataset. The raw data con-
sists of two data strings: wind forecast, , and actual wind generation, .

Fig. 3. Conditional probability distributions, . The peak value of
each distribution is close to the forecast value, , implying that the forecast
is generally good.

at plug-in by (1), which then is used to find the total energy
requirement to charge the PEV fleet using (2):

if
otherwise

(1)

(2)

where is the trip length and AER is the all-electric range of the
PEV. The initial SOC will lie in the window of 30–80%, which
is the range the battery operates [32]. is the battery capacity
and is assumed to be 16 kWh, which is typical for 40-mile-AER
PEVs [32]. The maximum charging power is 1440W, limited by
the Level-I electric vehicle charger [33], and only night charging
at home is allowed. The response of the charging level is as-
sumed to be instantaneously fast, and dynamics and losses in
batteries are ignored.

B. Wind Power

An 800-MW wind farm is assumed to be connected to the
electricity grid, which can support about 10% of the peak load
in Michigan when running at the rated power. The Eastern
Wind Dataset from the National Renewable Energy Laboratory
(NREL) [34] is used to extract the conditional probability
distribution, denoted as , to represent the (stochastic)
actual wind generation under a given forecast . Fig. 2
shows a snapshot of the NREL dataset, and Fig. 3 shows the
extracted conditional probability distribution. will
be used to derive the reserve requirement and to estimate the
expected shortfall of wind power.
The grid operator procures reserve to handle the wind inter-

mittency and other uncertainties. Assuming that over-produc-
tion in wind power can always be curtailed, only the up-regu-
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Fig. 4. Nominal and modeled load profiles.

lation reserve is needed for under-production. The curtailment
allows wind power producers to reduce risks in the electricity
market, in that they do not need to pay for over-production.
Furthermore, the wind power producers can schedule their gen-
eration conservatively (lower than forecasts) when the energy
price in the market is low or when the reserve price is high.
The wind scheduling can be aggressive when they are not fully
responsible for their intermittency (which is the case in many
markets today). A further assumption is that the reserve has to
cover 95% of the under-production, and then the reserve re-
quirement, , can be computed using (3). The expected
shortfall, , shown in (4), must be made up by dispatching
the reserve or throttling back the PEV charging:

(3)

(4)

where the two aforementioned quantities are both functions of
the wind scheduling decision, , which is a control variable in
the scheduling optimization in Section III-A. is the cumula-
tive probability distribution function of , and is
the inverse of , which tells the least wind power output of a
given probability. The plus sign indicates the truncation of
negative values, and the expectation (the operation imposed by
) in (4) is taken with respect to .

C. Electricity Grid

The grid model consists of several elements: the load, gener-
ation costs, and frequency dynamics.
1) Grid Load: The hourly load data in the Detroit Edison

serviced area is used as the nominal load, which ranges be-
tween 5500–8000 MW. Sub-hour fluctuations are generated by
a random process to match the typical range of fluctuations on
state-wide power systems [35]. The nominal load and modeled
load with fluctuations are shown in Fig. 4.
On top of the existing grid load, 7.38 GWh of energy is re-

quired to charge the two million PEVs. The PEV charging is
assumed to be controllable, and the optimal charging is to be
found by the optimization in Section III-A.
2) Generation Costs: The price of electricity generation,

shown in Fig. 5, is acquired from the Oak Ridge Competitive
Electricity Dispatch Model [36]. The reserve scheduling cost
is assumed to be 3% more expensive than the generation price
based on the statistics in [37], and the reserve dispatch cost is
assumed to be the same as the generation price and only occurs
if the reserve is dispatched.
3) Grid Frequency Dynamics: The frequency of the AC elec-

tricity deviates from the nominal 60 Hz when there is mismatch

Fig. 5. Price of electricity generation. This curve increases in a staircase
fashion because the dispatch of power plants is discrete and the price jumps
once an additional power plant is switched on.

Fig. 6. Model of the grid frequency dynamics.

between the load and generation. The grid frequency dynamics
is approximated by the rotational dynamics shown in (5), and
its model structure is depicted in Fig. 6:

(5)

where is the system inertia, and is the nominal frequency.
is the grid load, and are the electricity gener-

ation and reserve. The last term, , is frequency dependent to
capture the phenomenon that rotary loads, such as motors, slow
down and consume less electricity when the grid frequency de-
creases, which is modeled as (6):

(6)

where is an empirical constant suggested in [38].
Equation (7) and (8) describe the dynamics of and

. Both are first-order dynamics, but with different time
constants and implications:

(7)

(8)

where and are time constants, is the nominal
grid load, and are controller gains. and are chosen to
resemble the ramp rate limits in each type of generation [38],
and and , are chosen to match typical frequency deviations
on state-wide grids [39].
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Fig. 7. New model of the grid frequency dynamics with controllers for wind
power scheduling and PEV charging included.

Fig. 8. Objectives and time scales of the hierarchical controller.

III. HIERARCHICAL CONTROLLER

A hierarchical controller is designed to incorporate the PEV
charging andwind power into the electricity grid. The grid struc-
ture is changed from Figs. 6 and 7. The controller consists of
three levels, and wind power stochastic is included into the top-
level controller (marked as the green light bulb), and the PEV
charging is handled by the middle-level ( and ) and bottom-
level controllers ( and ). The objectives and time step
resolutions of each controller are summarized in Fig. 8.

A. Top-Level Controller: Scheduling Optimization

An optimization problem is formulated to find the optimal
scheduling of the electricity generation and wind power to sat-
isfy the grid load and PEV charging demand at minimum cost.
The optimization problem is stated in (9)–(19). Equation (9) is
the objective function, including costs of electricity generation

, reserve scheduling , and expected reserve
dispatch . The rewards to PEVs for supporting re-
serves, if considered, can also be included into the objective
function; however, such remuneration is not considered in this
work. The two controlling variables, and , are the elec-
tricity generation and the scheduling of wind power

. The state, , is the remaining PEV energy demand. Its dy-
namics and constraints are detailed as follows:

(9)

subject to

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

where

aggregated PEV charging load (MW);

charging limit (MW);

total PEV energy demand (MWh);

reserve requirement for grid load (MW);

reserve requirement for wind power (MW);

scheduling of conventional reserve (MW);

expected shortfall of wind power (MW);

expected dispatch of conventional reserve (MW).

Equations (10)–(14) are constraints related to the electricity
generation: (10) states the balance of supply and demand (i.e.,
scheduled generation and loads); (11) ensures that the total PEV
charging demand is satisfied; (12) states the lower and upper
bound on PEV charging power due to the Level-I charger limit;
(13) describes the state dynamics; and (14) is the constraint for
the initial state.
Equations (15)–(19) are related to the reserve scheduling and

dispatch: (15) states the reserve requirement for the grid load,
which is 5% of the nominal load magnitude according to [21];
(16) states the reserve requirement for wind power according
to (3); (17) states that the total reserve requirement must be
met by either the controllable PEV load or the scheduling of
conventional reserve; (18) states the expected shortfall of wind
power; and (19) states the expected dispatch of conventional
reserve if wind shortfall exceeds the magnitude of the control-
lable PEV load . Notice that (17) counts the PEV load as reserve
because it can be throttled back and forth by the bottom-level
controllers (to be explained in Section III-C). Finally, (19) im-
plies that throttling back PEV load is preferred to dispatching
the conventional reserve because the former is free.
In addition, several implicit influences of in the optimiza-

tion problem are worth mentioning. Increasing can reduce
the energy generation [ in (10)], but it also increases the re-
serve required for wind power [ in (16)] and the expected
shortfall [ in (18)]. Consequently, the scheduling and ex-
pected dispatch of conventional reserve may rise [ in (17) and

in (19)] if they exceed the range that the controllable PEV
load can cover. These coupling constraints are the main reasons
why this optimization problem is non-intuitive.
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Fig. 9. Optimal scheduling results for the nominal case.

The scheduling optimization is solved assuming that knowl-
edge about generation prices (Fig. 5), the nominal grid load (the
dash line in Fig. 4), and wind forecasts (the grey line in Fig. 2)
are known. However, the actual grid load and actual wind output
are not known. The time horizon of the optimization is 11 PM
to 8 AM, which are denoted as Hours 23–32 in several fol-
lowing figures. This time horizon is chosen because we focus
on night charging. A longer horizon is unnecessary because the
solution seeks valley-filling due to the lower prices in evening
hours. This evening-hour focus does not imply that we “pro-
hibit” day-time charging, a function that may be desirable to
PEVs with long trips. Daytime charging will be treated as con-
ventional (uncontrollable) grid load.
The dynamic programming technique is used to solve this

optimization problem, and Fig. 9 shows the optimal controls for
the nominal case. The four arrows marked at Hour 26 illustrate
that the constraint for the balance of supply and demand, (10),
has been satisfied. The difference between the total generation

and the nominal load is used for PEV charging.
Several properties in the optimal solution are observed:
1) A noticeable amount of PEV charging is saved for the last
hour, so that there are enough PEVs available as reserve,
which helps to reduce the cost associated with conven-
tional reserve scheduling and dispatch.

2) The scheduling of the electricity generation, , generally
takes advantages of the staircase kinks in the energy price
by using as much low-price generation as possible. This
phenomenon can be seen in Fig. 9 where the generations
below $28.0/MWh were fully used all the time. This is
true except for the last hour, due to the wind power reserve
factor stated above.

3) Due to the fact there is no penalty on early or late PEV
charging as long as it happens during the designated
horizon, this optimization problem may have multiple
solutions. For, example, exchanging or
with will not alter the cost optimality.

The optimal control, , will replace the tracking reference,
, in (7), and this new tracking reference is denoted as
, in Fig. 7. Furthermore, both and will affect the

feed forward component in the middle-level controller for PEV
charging.

B. Middle-Level Controller: Load Following

The middle-level controller plans the charging of the whole
PEV fleet so that the sum of the PEV load and grid load

Fig. 10. Charging power allocation rule. This decreasing function is imple-
mented on each smart charger locally, which maps low SOC to a high charging
power and vice versa.

matches the generation scheduled by the top-level controller.
The middle-level controller consists of two elements: the cen-
tralized broadcast (denoted as in Fig. 7) and the charging
power allocation rule ( in Fig. 7). The former is done by the
grid operator, and the latter is implemented by individual smart
chargers. This decentralized arrangement allows this scheme to
be applied to an indefinite number of PEVs.
1) Centralized Broadcast: This element is the feed forward

component for PEV charging, in which an SOC threshold,
, is derived [see (20)–(21)], and the grid operator

broadcasts it to smart chargers to coordinate the charging over
the whole PEV fleet:

(20)

(21)

Equation (20) is an updated version of (10) and states the ref-
erence of the PEV charging, , which is essentially the sched-
uled PEV load. Equation (21) converts to by inverting
the downstream of the system, i.e., the charging power alloca-
tion rule, (detailed in the next section). More specifically, one
way to compute numerically is to search through all possible
values of to find out the accumulated PEV load at each
time step, and the particular that produces the accumu-
lated PEV exactly the same as will be the control input chosen
to be fed to .
Equations (20) and (21) are computed offline since all needed

information can be acquired a priori. It should be pointed out
that the grid operator does not need information from every PEV
to compute (20)–(21). Only the total number of PEVs, battery
capacity, and the three distributions shown in Fig. 1 are required.
Furthermore, these parameter/distributions need not be very ac-
curate because the feedback actions can accommodate for the
uncertainties.
2) Charging Power Allocation Rule: The idea of the alloca-

tion is based on observations from the optimal PEV charging
in [40]: allot higher power to vehicles with low SOC and early
plug-off time. The low/high SOC level is relative to
broadcasted by the grid operator, and the earliness of plug-off
time is relative to the end of time horizon in the scheduling op-
timization, i.e., Hour 32.
The charging power is determined by the hyperbolic tangent

curve shown in Fig. 10, which maps low SOC to high charging
power and vice versa. In addition, this curve is symmetric to

and will shift to the right if rises.
serves as the tuning knob to the grid operator for commanding
the charging of all PEVs. In addition, despite of the fact all PEVs
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are assumed to have the same battery capacity in this paper,
the hyperbolic tangent curve can handle the scenario of PEVs
having different battery capacities. The curve has sharp slope
around , and if a PEV with a large battery is inade-
quately charged, its charging power will quickly ramp up. Fur-
thermore, the scaling factor, SF, defined in (22) allows PEVs
that unplug early to charge at a higher power. For example,
a vehicle with the plug-off time at Hour 30.5 (6:30 AM) will
have SF equals 1.2, i.e., its charging power will be scaled up
by 20%. Since it is assumed that the grid operator is capable
of deriving the SOC distribution, the amount of additional PEV
load due to early plug-off can also be computed and incorpo-
rated into the computation for the Centralized Broadcast (i.e.,
derive ):

Plug-Off Time
(22)

To further elaborate the power alslocation rule, the curve in
Fig. 10 does not possess optimality under any criterion. In fact,
any decreasing curve may do the job, although a smooth curve
is preferable for designing the feedback gains in Section III-C.
Similarly, the scaling factor can have other forms, for example,
a squared term can further favor vehicles with early plug-off
times; nevertheless, the current choice in (22) was found
sufficient.

C. Bottom-Level Controller: Grid Frequency Regulation

The bottom-level controller, denoted as and in
Fig. 7, is a feedback control, which is designed to mimic the
feedback PI-controller in the original grid in Fig. 6. This con-
troller uses the grid frequency deviation as the feedback cue to
alter the centralized broadcast signal, , so that the PEV
charging will temporally speed up or slow down. Furthermore,
this controller will be implemented on individual PEVs locally,
meaning that the feedback control will continue to regulate the
grid frequency even if the (centralized) reference signal is de-
layed or interrupted.
The challenge of designing the feedback gains, and
, lies in the fact that the chosen curve in Fig. 10 makes

the input/output relation of nonlinear; so, and
must be designed for robust performance under varying plant
sensitivity. Indeed, and are designed based on the
sensitivity analysis.
1) Feedback Gains for PEV Charging: The PI-controller

gains, and , in Fig. 6 provide the inspiration to derive
and for PEV charging.
The PI-controller gains, and , in Fig. 6 can be found by

existing approaches, such as pole placement or root locus tech-
nique; furthermore, the proportional gain, , has the physical
meaning as the inverse of frequency sensitivity to the regula-
tion power, shown in (23):

(23)

In the proposed concept of controlling PEV charging to
regulate the grid frequency, the proportional gain needs
to embody the physical meaning as the inverse of frequency

Fig. 11. All possible values of in the time window of generation
scheduling.

Fig. 12. Sensitivity of to , , at Hour 28.

sensitivity to the SOC threshold broadcast, which can be done
through dividing by the sensitivity of to , , as
shown in (24) and (25), where can be numerically computed
(illustrated in the next section). The integral gain, , can be
found in the same way, as shown in (26):

(24)

(25)

(26)

In fact, is the linearization of , and (25) and (26) ensure
that both systems in Figs. 6 and 7 have the same closed-loop
poles. Furthermore, due to the much faster response in PEV
charging than conventional reserves, it is possible to achieve
better performance in frequency regulation by choosing faster
closed-loop poles when designing and .
2) Sensitivity of PEV Load: Figs. 11 and 12 explain how to

compute numerically. Fig. 11 is obtained by offline computa-
tion, which uses the distributions of the plug-in time, plug-off
time, and derived in Section II-A to find all possible

values by searching through every level in Hours
23–32. Fig. 12 is then extracted from Fig. 11 at a specific time
(Hour 28), and the slope of the extracted curve is to be used
in (25) and (26).
Due to the fact that changes over time, the feedback gains
and are not constant. A simplified constant gain con-

troller is further derived by using the largest value of in (25)
and (26), which is easier to implement. It has been confirmed in
the previous study [19] that, on the Nyquist plot, the simplified
constant-gain design still possesses a large stability radius for
the system in Fig. 7.
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TABLE I
SIMULATION CASES

Fig. 13. Generation dispatch from conventional sources. The oscillations in
Cases A and B are due to fluctuations in the grid load and wind power. Case C
throttles the PEV charging so that the generation can closely follow the optimal
scheduling in Fig. 9.

IV. SIMULATIONS

Three cases, with different penetration levels of PEV and
wind power and different degrees of control integration, are sim-
ulated to demonstrate the effectiveness of the three-level con-
troller. These three cases are summarized in Table I. Case A
serves as the reference with unmitigated PEV charging. Cases B
and C both have 25% PEVs in the transportation sector and 10%
wind power in the electricity generation mix; however, Case B
has only the top and middle-level controller implemented but
not the bottom level, and the conventional reserve is still needed
for frequency regulation, whereas Case C has all three levels of
controllers and no conventional reserve.1

All three cases have the same percentage of PEVs fully
charged, 99.5%, but their performances in generation dispatch,
frequency regulation, and costs are different.
Fig. 13 shows the actual dispatch, including both the elec-

tricity generation and reserve from conventional sources. Case
A has substantial generation increase before Hours 23 because
PEVs start charging in early evenings, while Cases B and C have
the PEV load properly confined within Hours 23–32. However,
Case B does not achieve the maximum benefit because fluctua-
tions in the grid load and wind power demand dispatching con-
ventional reserves. Case C has feedbacks to throttle the PEV
charging and the generation closely follows the optimal sched-
uling , except the beginning of Hours 23, 30 and 32 when
has large changes and the slow time constant limits the

ramping of the electricity generation.
Fig. 14 highlights the frequency regulation results. Cases

A and B both use the conventional reserve and have similar

1In Case C, the conventional reserve is switched off except the latter half hour
in Hour 32, when most PEVs are fully charged and unavailable for providing
grid frequency regulation. The simulation detects the frequency deviation being
larger than 1 Hz (see Fig. 14), and it then switches the conventional reserve back
on.

Fig. 14. Grid frequency regulation. Case C outperforms Cases A and Bmost of
the time because controlling PEV charging has faster response than dispatching
conventional reserves.

Fig. 15. Total electricity generation costs of various degrees of control
integration.

frequency deviations, whereas the grid frequency in Case C is
regulated by controlling the PEV charging and hasmuch smaller
deviation most of the time. However, the performance in Case
C deteriorates at both ends of the valley hour; Hour 23 is due
to the singularity of at that particular time (the input/output
relation is close to zero), and Hour 32 is because most PEVs are
fully charged.
Fig. 15 shows total generation costs of the three simulation

cases. Each case two cost components, one for the energy and
the other for the reserve. Case A has energy cost for serving the
grid load and the uncontrolled PEV charging and reserve cost for
covering fluctuations in the grid load. Case B, due to the utiliza-
tion of wind power, has smaller energy cost but larger reserve
cost. In fact, the cost reduction in energy is almost cancelled by
the increase in reserve. Case C has energy cost similar to Case
B because of using wind power and has a very low reserve cost
because the controlled PEV charging eliminates the use of con-
ventional reserves for most of the time. Notice that the cost in
Case C is based on the assumption that it is free to control PEV
charging to support reserves and no rewards are given to PEV
owners. Hence, Case C can be interpreted as a lower bound for
the system operation costs with PEVs. If compensation is paid
to PEV owners for providing reserves, the compensation should
not be more than the cost difference between Case B and Case
C, else it will be more economical to use conventional genera-
tors as reserves.
To further illustrate the value of the synergy between PEV

and wind power, Fig. 16 shows the cost difference between Case
C and B at various penetration levels of PEV and wind power
with the proposed hierarchical controller implemented. Several
markers of PEV and renewable energy targets [15], [41], [42]
are also shown in the figure. The cost difference is normalized
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Fig. 16. Cost difference between Case C and B (normalized). Significant cost
reduction is achieved when the PEV fleet and wind power grow together.

to the cost of Case B. This figure shows that the cost reduction
merely exists when only one of the two green technologies is
present on the grid, but the cost can reach a remarkable 20%
reduction when both technologies are at high penetrations and
the synergy fully utilized.

V. CONCLUSION

This paper proposes a three-level controller to realize the
synergy between the controllable PEV charging and the inter-
mittent renewable wind energy: the top-level controller mini-
mizes the generation cost and finds scheduling of (non-renew-
able) generation and wind power; the middle-level controller
allots charging power to individual PEVs based on their bat-
tery SOC and plug-off time to achieve load following; and, the
bottom-level controller uses feedbacks to control PEV charging
in real time to regulate the grid frequency. The effectiveness of
this controller is validated by simulations on a state-wide grid
mode based on realistic data inMichigan.Major results are sum-
marized as follows:
1) The proposed control algorithm is implementable.
The algorithm comprehensively considers major grid
dynamics at various time scales, including the hourly
scheduling, sub-hour PEV charging scheduling, and
real-time grid frequency regulation, and it is designed to
have enough instruments to handle the real world uncer-
tainties. Furthermore, the algorithm consists of an explicit
PEV charging rule (the hyperbolic tangent curve) that is
simple enough to be programmed on smart chargers.

2) Most PEVs are fully charged.
99.5% of PEVs are fully charged even though the PEV fleet
is used to regulate grid frequency, meaning that the idle
generation capacity in evenings can accommodate quite
many PEVs if the charging is well controlled.

3) Grid frequency regulation is improved.
The response of controlling PEV charging is much faster
than dispatching conventional reserves, which enables the
much improved frequency regulation.

4) The synergy achieves substantial cost reduction.
To the authors’ best knowledge, the proposed control al-
gorithm is one of the earliest in the literature that realizes

the synergy of PEV and wind power. Furthermore, the sig-
nificant cost reduction in Figs. 15 and 16 indicates that the
PEV fleet and renewable power should grow together to
realize their full benefits.

This paper demonstrated the value of fully explore the syn-
ergy between PEV and wind power. The control concept is not
limited to wind power and can be extended to other intermit-
tent renewable sources. Some open questions remain to be an-
swered. A key requirement is to make the controller adaptive to
handle the non-zero mean forecast error in wind power, which
may hurt the PEV charging completion in the situation of wind
under-production.
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