Disturbance Observer Based
Tracking Control

A disturbance observer based tracking control algorithm is presented in this paper. The
key idea of the proposed method is that the plant nonlinearities and parameter variations
can be lumped into a disturbance term. The lumped disturbance signal is estimated based
on a plant dynamic observer. A state observer then corrects the disturbance estimation in
a two-step design. First, a Lyapunov-based feedback estimation law is used. The estima-
tion is then improved by using a feedforward correction term. The control of a telescopic
robot arm is used as an example system for the proposed algorithm. Simulation results
comparing the proposed algorithm against a standard adaptive control scheme and a
sliding mode control algorithm show that the proposed scheme achieves superior perfor-
mance, especially when large external disturbances are present.
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1 Introduction 2 Disturbance Estimation Based Tracking Control

Tracking control for uncertain nonlinear systems with unknowfchemes
disturbances is a challenging problem. To achieve good trackingThe nonlinear systems studied in this paper are assumed to have
under uncertainties, one usually needs to combine several or altgé following form
the following three mechanisms in the control design: adaptation, .
feedforward(plant-inversio, and high-gain, this paper is no ex- x(t)=Ax(t)+I'(u,x)+Bd (1)
ception. The tracking control of nonlinear systems under plaWhereXE R" denotes the state vectdxe R™" is the known state
uncertainties and exogenous disturbances is studied in this paper, . T'(u,X) €R" is a known nonlinear vector € R™ is the
However, we will focus on the robotic examples for both Iitera]- 1 ALK € o e
ture review and numerical simulations. umped disturbance vector which includes uncertaintie®\,of

i nxm ; i H

Many adaptive control schemes for robotic manipulators a@Nd exteral disturbanceB.c R™™ is the known disturbance in-
sume that the structure of the manipulator dynamics is knovf}}'lJt matrlx’.’ Due to the lumped natureafB is usually square. An
and/or the unknown parameters influence the System dynamics gpServer” for this system is
an affine mannefl-5|. There are several inherent difficulties Aoy an ~ -
associated with these approaches. First of all, the plant dynamic X(1)=AX(t) +T'(u,x) +Bd(t) + K(x=X) )
structure may not be known exactly. Second, it was demonstraigflereK e R"*" is the observer gain. The error dynamics are then
[6,7] that some of these designs may lack robustness against gg-AkeJr Bey, wheree=X—x ed=a(t)—d(t) andA=A-K
certainties. Recently, adaptive control algorithms requiring 1e§$he closed-loop state matrix. Since we have full state feedback,

model information were proposd@-11. These algorithms ad-  ¢an pe chosen to makg, Hurwitz. The disturbance estimation
just the control gains based on the system performance and t@ﬁs are then chosen to be

are commonly referred to as performance-based adaptive control.
These algorithms require little knowledge of system structures and
parameter values. However, the control signal might become quite
large. Plant-inversion based methdgdg., I/O linearization, back- ~ ~
stepping, roughly speaking, focus on the canceling of unwanted d(t)=do(t) —Koe (4)
nonlinear dynamics. ngh-galn'approaches .such as §I|d|ng model K A+ K,BK,+BTP=0 (5)
controls could guarantee stability but, again, sometimes require R
very large control signals. While in some cases this may bewghered,(t) is the uncorrected estimated disturbarg) is the
viable approach, in many other applications it may not be the be#rrected estimated disturbance, atg is the correction gain.
solution. The disturbance estimation schemes shown in EB)s(5) consist

In this paper, a disturbance-estimation based tracking contefltwo steps:(i) precorrection, obtained by assuming that the dis-
method is presented. Disturbance observer based control alg@bances are constafunder which Eq(3) becomes trug and
rithms first appeared in the late 1980<]. Since then, they have (ji) estimation correction for time-varying disturbances. The con-
been applied to many application$3—15. Recently, theH.. vergence property of the uncorrected estimation schine(3))
technique has been applied for the design of an optimal distig-summarized in the following two facts.
bance observef16]. In this paper, we focus on the design for Fact 1: If d is constant and\, is Hurwitz, then the update law
nonlinear systems. The magnitude of the disturbance is estima@%d: —BTPe guaranteesV<0 for the Lyapunov functionvV
based on the state estimation error in a two-step design. The egtF—TP el
mated disturbance can then be used to improve the performance_oef €T €484, )
literally any control algorithms. In this paper, a simple computed Proof: see Appendix. ) ) )
torque method is selected. The performance of the disturbanceFact 2: If the update law(Eg. (3)) is applied to a system with
observer-enhanced method is then compared against those épastant disturbances, théil e £°NL? andey e £”, and i)
simple adaptive control and a simple robust control algorithm. lim,_ . e(t)—0 and lim_ ., Bey (1)—0. Furthermore, ifB has
full column rank, then we also hav@i) lim, .. eq (t)—0.
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Fig. 1 Schematic diagram of the disturbance estimation
algorithm

Fig. 2 Telescopic robot arm

lem of Eq. (3) is that whend(t) is time-varying, it cannot be

implemented. To relax this restriction, we introduce the following

procedure. Lemma 4 is a direct extension of the results presented in Sec-
Lemma 3:If (i) the assumptions ifracts 1and2 are satisfied, tion 2. It should be noted that we do not have to start from the

except thatd(t) may be time-varying. An improved disturbancecomputed torque method. The estimated disturbance can be used

estimation is therd(t) =d,(t) —K.e, whereey =K,e describes to enhance literally any control algorithms.

the approximated relationship betwezande, , andK, is solved
from Eq. (5). ° 4 Case Study(Tracking Control of a Telescopic Robot
Proof: see Appendix. Arm)
The disturbance estimation procedure is summarized in Fig. 1.
It should be noted that E@5) is algebraic, and the existence of ab
solution is guaranteed. Whe«, is low dimensionallike the ro-

4.1 System Description. The schematic diagram of the ro-
ot arm is shown in Fig. 2. Two actuators are used to control the
botic example to be presented beloit can be solved symboli- angle¢ and length/”. The mass of the extension arm is assumed
cally. For higher dimensionaK,, a numerical solution might to be small compared with the payloktl The dynamic equations
have to be used. were found to beM/Z/am(¢+ a1+ arp+gl/ sin(d)+d)=u,
and M/km(/+ as/ +ay/—gcos@)+d)=U,, where a;
=a;IM/242/17, ay=asIM/?, az=KiIM, as=Ks/M— 2,

d, andd, are unknown disturbanceas andkg are the stiffness
coefficients,a; andk; are the viscous friction coefficients, ang
3.1 Dynamic Equations of the Robot Manipulator. The andu, are the electrical currents applied to the actuators. The
dynamics of a robot manipulator in general can be described d@rque in the joint and the force in the arm are assumed to be
. N T,=anu; andT,=k,,U,, respectively, wherer,, andk,, are un-
Mn(@)g+Cy(d,d)d+9gn(d)=F (6) known constants. In the following subsections, three full-state
feedback control algorithms are presented.

3 Tracking Control Example—Robot Manipulators

whereg e R" is the generalized coordinate,)(, denotes nominal
functions,M ,(q) e R"™" is the inertia matrixC,(q,q) € R"" in- 4.2 Adaptive Control. A classical adaptive observgt7] is
cludes the Coriolis and centrifugal termg,(q) is the gravity used to estimate the parametets, a;, ag, Ky, K¢, andkg. To
term, andF € R" is the control input associated with the generalimplement this algorithm, the dynamics are shown in a different
ized coordinateq. Under external disturbances and plant unceform:
tainties, the true plant dynamics are assumed toMb)q o T
+C(a.0)a+9(a) +d(q,q.0=F,  where  M(q)=M() _ X=Ax+BOT(LU)+g(x.u) -
+AM(qg), C(q, q) Cn(9,9)+AC(q,q9), and g(q)=g,(q) wheredisthe unknown vector. The adaptive observer is chosen to
+Ag(q), andd(q,q,t) € R" represents the disturbance input. be

3.2 Disturbance Observer Based Tracking Control. If X=AX+BOTF(x,u)+g(x,u) +K(Xx—X) (8)
the parameters of the system are exactly known, the computed
torque method would generate a control sigitak M (q)(qq Based on whichd can be estimated frorrﬂ —fT(x,u)B"Pe,
—kieq—kyeq) +Ci(d,0)q+9,(a), whereqy is the desired tra- wheree=X—x, P is a positive definite matrix solved frominT

jectory, €=q—dq is displacement error, ankh andk, are the +PA,=—Q, Q>0. More specifically, the update laws are
feedback gains. When there are no uncertainties, the error dynam-

ics are éy+k,e4+k,e4=0, which can be made asymptotically ¢ ¢
stable by choosing; andk,. When uncertainties exist, however, [& & aml=—[—¢ —¢ U0 1]Py| - 9)
the error dynamics becon@+ kled+ koeq+ 8(4, q q) =0, where -
5(9,9,9) =AM(a)d+AC(q,a)q+Ag(a) +d(a,q,t). If J_y
8(0,q,q) #0, the system can only be driven to a neighborhood of R R Py 0 1P 10
the desired trajectory. In the following, we will introduce a dis- [ks Ki m]_ -[= Ua]l 1P, A,_ (10)
turbance observer based tracking control which can be viewed as
a “disturbance-observer-enhanced computed torque” scheme. The control law is then

Lemma 4:For a plant under constant disturbancesiijfThe M /2 in( )
control input is chosen to bE=qdfkledikzedfwd(q,q,q,t), Up=—— | py+ &y b+ aap+ 9s ~ +k1e¢+k2e¢)
and (i) the estimation algorithmswg = — B'"PE; and ®¥m / (11)
Wq(,0,8,t) =Wy (0,0,0,) —KoEq are used, WhereEd:[EZ]. "
Then we can have lim.. ey(t)—0, lim_.. eq(t)—0, and u2:r(7d+&3/+&4/_g cog ) +kse, +kee,)  (12)

lim,_.. e,(t)—0, wheree,,(t)=wyg—wy. m
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where &y =a(/M/?+2(/17), a=as/M/?  as=kiIM, 5

anda,=ks/M— ¢ D41/}
4.3 Sliding Mode Control. The basic idea of sliding mode %503 i

control is to use switchingsaturation functions with gains larger Z,

enough to cover the uncertainties. For the telescopic robot ex-
ample, the sliding surfaces are chosen toShe ¢— ¢+ \1(¢ 1 1
—¢q) andS,=/"—/4+N\,(/—/4), where\,; and\, determine Time (sec) Time (sec)
the sliding dynamics. The control signals are then obtained from L6
Si;=—kysatS,/N1¢p) and S,=—«k,satS, /Ny ), where T4
saf-) is the saturation function, andl, and/, are the widths of et

=
the boundary layers. Since this is a standard design process, thegul'2
detail is omitted. 30t

—

4.4 Disturbance Observer Bgsed Tracking Qontrol. The 0.80
robot dynamics are rewritten ag=u,+w, and /' =u,+w,,
where the lumped disturbances a/r@,:&—M/Z/am(éH a1 _ _ _ o
+ayp+gl/ sin@)+dy), and W/:Z— M/km(k-i- a3/'+ as/ Fig. 4 Simulation results for the sliding mode control
—g cos(p)+dy). From the enhanced computed torque method pre-

sented in Section 3.:/2* the control algorithm ug=datki€s g gtem to the desired trajectoffyig. 3. This is mainly due to the
+ko€4— W, andu, =g+ kze, +kse,~W, . The error dynamics fact that the parameter estimation does not work properly under
are then e,—kie,—ke =€y, and e,—kse,—kse,=e,, ., external disturbances.
wheree,,=w,—w, ande,, =w,—w,. In matrix form, the er- Siiding Mode C L Th | gains for the slidi g
ror dvnamics areE.—A.E.+Be . and E.=AE,+B iding Mode Control. The control gains for the sliding mode

Y e, ¢ e e _e‘g’¢1 e S/ control algorithm are, =15, X,=8, ¢,=0.05, /,=0.02, and
where Eé*[éd,]’ E =[] As=lk, i) A=lk, i) and B  —55 . =25 Simulation results are shown in Fig. 4. The
=[2]. By applying Fact 1, and if we choose the Lyapunov candi-
+P)ALy=—Q(,, and the subscript-) denotes eithe or /.

Time (sec) Time (sec)

1

o
Q
Then the adaptive lawe,,=—BTP(E(, guaranteesV = g 3 20,;4‘\
—E] \P(,E,<0. SinceB has full column rank, from Fact 2 we e 2 10
()7 ()=C) - 2 2
have lim_... E(y(t)—0 and lim_,.. e,..,—0. g 5 \
. . . £ |{pos
5 Numerical Simulation Results -30 : 5105 : )
The simulation results of the three control algorithms shown in Time (sec) Time (sec)

[\S]

the previous section are presented in this section. The nominal 0.04
plant parameters are assumed to Me= 1.5, a,=k,=1.0, as

Q

it £ E11 DpoB
=ks=0.65, anda;=Kk;=0.65. The true plant parameters dve = o [ 3
=1.5, a=Kn=0.35, as=k,=0.85, anda;=k;=0.45. The de- g o g
sired trajectories to be followed ar¢y= /2 sin(2rt)+7 and - =
/4=0.2sin(2rt)+1. In addition to parameter mismatch, external -0.02
disturbances are assumed to exist, and dge=25 sin(2mt) 0 .. 2 Ti
+35sin(20rt) andd,= 25 sin(2rt)+15 sin(2Grt), respectively. Time (sec) ime (sec)

Adaptive Control. The observer gains used af@=[£; , Fig. 5 Tracking errors for disturbance observer based (DOB)

P,=0.1, andP,=0.1, and the control gains are =28, k, and sliding mode control  (SMC)
=400, k;=28, k,=400. The adaptive observer fails to drive the

1 ~ 20
6 40 § r
~ g i 5 2 3 10f
24 2 20} | = 2 b
~— S N o0 <
o 8 ‘.‘ 7 y, =) =0 PO !
22 ] OW < &
< o AN 3 <10
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Fig. 6 Tracking error plots for disturbance observer based
Fig. 3 Simulation results for the adaptive control (DOB) control
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tracking performance is adequate, except the arm extension rateProof of Lemma 3:
However, the control signal chatters excessively due to the highFrome=A,e+ Beg,, e(t) is generated from a linear dynamics

feedback gains. excited byey (t). Intuitively, we can assume that
Disturbance Observer Based Tracking Controllhe observer

gains used ar&,=[47.97 7.54 andP=[353202]], and the con-
trol gains arek; =28, k,=400, k3= 28, k,=400. Since the adap- .

€q,(t) =Ko(t)e(t) (A4)

tive control approach fails to work satisfactorily under extern
disturbances, we will focus on the comparison between slidi

mode controSMC) and the propose(DOB) algorithm (Fig. 5).

eeneg, ande, whereK(t) is potentially time varying. In order

é@a good low-frequency approximation of the relationship be-

to satisfy the condition thav < 0, Eq. (A4) must be consistent

The DOB control achieves superior tracking. From the arm extewith Eq. (A2). Taking the derivative of EqA4)
sion rate plot, the control torque oscillates much less than that of

the SMC.

eq () =Kq(De(t) +Ko(h)e

Finally, Fig. 6 shows the results comparing the DOB controller

with and without the estimation correction. It can be seen that

:Ko(t)e(t)+Ko(t)(Ake(t)+Bed0(t)) (AS)

when the correction is not used, steady-state error exists in the
length tracking. A major benefit of the correction is thus to eIimiSubstitutingédoz —B"Pe and eq, (1) =Ko(t)e(t) into Eq. (A5),

nate the steady-state error caused by external disturbances.

6 Conclusions

we have

Ko(t) == (Ko() At Ko(1)BKo(t) + BTP) (A6)

A disturbance observer based tracking control scheme for non- ) ) . o .
linear systems was proposed. The plant uncertainty, unmodefe@ (A6) can be integrated in real-time. Or, to simplify the imple-
dynamics, and external disturbances are lumped into a disturbaft@ntation, the steady-state solution can be used:

term, which is estimated based on the state estimation error in a
two-step design. Based on the proposed disturbance estimation
scheme, a tracking controller is then constructed which is asyngy,
totically stabilizing in the sense of Lyapunov. The disturbanc

estimation based tracking control is compared with a classi

KAt KBK,+BTP=0 (A7)

om AEq. (A4), the disturbance estimation correction is then
Qt):do(t)—Koe.

adaptive controller and a sliding mode controller. A telescopic

robot manipulator is used as an application example. The pro-

posed control algorithm was found to generate superior trackiiRgferences

performance and smoother control action. This superior perfor{i] craig, J. ., Hue, P., and Sastry, S., 1987, “Adaptive Control of Mechanical
mance is due to the fact that all the system uncertainties are com- Manipulators,” Int. J. Rob. Resg, No. 2, pp. 16-28.

pensated without requiring large feedback gains.

Appendix

Proof of Fact 1:
Choose the Lyapunov candidate-e"Pe+ egoedo. The deriva-

tive of this function along the trajectory of the error dynamics is

then

V=—e'Qe+2e"P Bey,+ ZéJOedo (A1)

If the adaptive law

e, =—B'Pe (A2)

is applied, Eq(Al) becomes/= —e'Qe<0.
Proof of Fact 2:

(i) Since V(O):eT(O)Pe(O)+ego(O)edO(0)e£°° and V=
—e'Qe<0, it is obvious ee £* and eq e L”. Also, since
JoV dt=V(t)—V(0)=—[ee'Qe dit<, ee L.

(i) Sinceee L™ andedoe L”, we haveee £”. From the facts

eeL” andee £L7N L3, according to Barbalat's lemn{d 8], we
have lim_,.. e(t)—0. Fromé=A.e+ Bey, and(A2), we have

e=Ae—BB'Pe (A3)

Sinceee £ andee £*, from (A3), we haveée £*. Because
lim,_.. [5e(t)dt=—e(0)<e, ande is uniformly continuous &
eL”), from Barbalat's lemma, lim, . e(t)—0. Since
lim_.e(t)—0 and lim_. e(t)—0, from, e=Ae+ Bey,, we
have lim_... Bey (t)—0. If B has full column rank, we can con-
clude that lim_,., edo(t)ao.
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