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A disturbance observer based tracking control algorithm is presented in this paper.
key idea of the proposed method is that the plant nonlinearities and parameter varia
can be lumped into a disturbance term. The lumped disturbance signal is estimated
on a plant dynamic observer. A state observer then corrects the disturbance estimat
a two-step design. First, a Lyapunov-based feedback estimation law is used. The e
tion is then improved by using a feedforward correction term. The control of a telesc
robot arm is used as an example system for the proposed algorithm. Simulation r
comparing the proposed algorithm against a standard adaptive control scheme a
sliding mode control algorithm show that the proposed scheme achieves superior p
mance, especially when large external disturbances are present.
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1 Introduction
Tracking control for uncertain nonlinear systems with unkno

disturbances is a challenging problem. To achieve good trac
under uncertainties, one usually needs to combine several or a
the following three mechanisms in the control design: adaptat
feedforward~plant-inversion!, and high-gain, this paper is no ex
ception. The tracking control of nonlinear systems under pl
uncertainties and exogenous disturbances is studied in this p
However, we will focus on the robotic examples for both liter
ture review and numerical simulations.

Many adaptive control schemes for robotic manipulators
sume that the structure of the manipulator dynamics is kno
and/or the unknown parameters influence the system dynami
an affine manner@1–5#. There are several inherent difficultie
associated with these approaches. First of all, the plant dyna
structure may not be known exactly. Second, it was demonstr
@6,7# that some of these designs may lack robustness agains
certainties. Recently, adaptive control algorithms requiring l
model information were proposed@8–11#. These algorithms ad
just the control gains based on the system performance and
are commonly referred to as performance-based adaptive con
These algorithms require little knowledge of system structures
parameter values. However, the control signal might become q
large. Plant-inversion based methods~e.g., I/O linearization, back-
stepping!, roughly speaking, focus on the canceling of unwan
nonlinear dynamics. High-gain approaches such as sliding m
controls could guarantee stability but, again, sometimes req
very large control signals. While in some cases this may b
viable approach, in many other applications it may not be the b
solution.

In this paper, a disturbance-estimation based tracking con
method is presented. Disturbance observer based control a
rithms first appeared in the late 1980s@12#. Since then, they have
been applied to many applications@13–15#. Recently, theH`
technique has been applied for the design of an optimal dis
bance observer@16#. In this paper, we focus on the design f
nonlinear systems. The magnitude of the disturbance is estim
based on the state estimation error in a two-step design. The
mated disturbance can then be used to improve the performan
literally any control algorithms. In this paper, a simple compu
torque method is selected. The performance of the disturba
observer-enhanced method is then compared against those
simple adaptive control and a simple robust control algorithm
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2 Disturbance Estimation Based Tracking Control
Schemes

The nonlinear systems studied in this paper are assumed to
the following form

ẋ~ t !5Ax~ t !1G~u,x!1Bd (1)

wherexPRn denotes the state vector,APRn3n is the known state
matrix, G(u,x)PRn is a known nonlinear vector,dPRm is the
lumped disturbance vector which includes uncertainties ofA, G
and external disturbances.BPRn3m is the known disturbance in
put matrix. Due to the lumped nature ofd, B is usually square. An
‘‘observer’’ for this system is

ẋ̂~ t !5Ax̂~ t !1G~u,x!1Bd̂~ t !1K~x2 x̂! (2)

whereKPRn3n is the observer gain. The error dynamics are th
ė5Ake1Bed , wheree5 x̂2x, ed5d̂(t)2d(t), and Ak5A2K
is the closed-loop state matrix. Since we have full state feedb
K can be chosen to makeAk Hurwitz. The disturbance estimatio
laws are then chosen to be

ėdo
5d̂

˙
o52BTPe (3)

d̂~ t !5d̂o~ t !2Koe (4)

KoAk1KoBKo1BTP50 (5)

whered̂o(t) is the uncorrected estimated disturbance,d̂(t) is the
corrected estimated disturbance, andKo is the correction gain.
The disturbance estimation schemes shown in Eqs.~3!–~5! consist
of two steps:~i! precorrection, obtained by assuming that the d
turbances are constant~under which Eq.~3! becomes true!, and
~ii ! estimation correction for time-varying disturbances. The co
vergence property of the uncorrected estimation scheme~Eq. ~3!!
is summarized in the following two facts.

Fact 1: If d is constant andAk is Hurwitz, then the update law
ėdo

52BTPe guaranteesV,0 for the Lyapunov functionV

5eTPe1edo

T edo
.

Proof: see Appendix.
Fact 2: If the update law~Eq. ~3!! is applied to a system with

constant disturbances, then~i! ePL`ùL2 and edo
PL`, and ~ii !

limt→` e(t)→0 and limt→` Bedo
(t)→0. Furthermore, ifB has

full column rank, then we also have~iii ! limt→` edo
(t)→0.

Proof: see Appendix.
It should be noted that matrixB can always be modified

to satisfy the column-rank requirement of Fact 2. The main pr
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lem of Eq. ~3! is that whend(t) is time-varying, it cannot be
implemented. To relax this restriction, we introduce the followi
procedure.

Lemma 3:If ~i! the assumptions inFacts 1and2 are satisfied,
except thatd(t) may be time-varying. An improved disturbanc
estimation is thend̂(t)5d̂o(t)2Koe, whereedo

5Koe describes
the approximated relationship betweene andedo

, andKo is solved
from Eq. ~5!.

Proof: see Appendix.
The disturbance estimation procedure is summarized in Fig

It should be noted that Eq.~5! is algebraic, and the existence of
solution is guaranteed. WhenKo is low dimensional~like the ro-
botic example to be presented below!, it can be solved symboli-
cally. For higher dimensionalKo , a numerical solution might
have to be used.

3 Tracking Control Example—Robot Manipulators

3.1 Dynamic Equations of the Robot Manipulator. The
dynamics of a robot manipulator in general can be described

Mn~q!q̈1Cn~q,q̇!q̇1gn~q!5F (6)

whereqPRn is the generalized coordinate, (•)n denotes nominal
functions,Mn(q)PRn3n is the inertia matrix,Cn(q,q̇)PRn3n in-
cludes the Coriolis and centrifugal terms,gn(q) is the gravity
term, andFPRn is the control input associated with the gener
ized coordinateq. Under external disturbances and plant unc
tainties, the true plant dynamics are assumed to beM (q)q̈
1C(q,q̇)q̇1g(q)1d(q,q̇,t)5F, where M (q)5Mn(q)
1DM (q), C(q,q̇)5Cn(q,q̇)1DC(q,q̇), and g(q)5gn(q)
1Dg(q), andd(q,q̇,t)PRn represents the disturbance input.

3.2 Disturbance Observer Based Tracking Control. If
the parameters of the system are exactly known, the comp
torque method would generate a control signalF5Mn(q)(q̈d
2k1ėd2k2ed)1Cn(q,q̇)q̇1gn(q), whereqd is the desired tra-
jectory, ed5q2qd is displacement error, andk1 and k2 are the
feedback gains. When there are no uncertainties, the error dyn
ics are ëd1k1ėd1k2ed50, which can be made asymptotical
stable by choosingk1 andk2 . When uncertainties exist, howeve
the error dynamics becomeëd1k1ėd1k2ed1d(q̈,q̇,q)50, where
d(q̈,q̇,q)5DM (q)q̈1DC(q,q̇)q̇1Dg(q)1d(q,q̇,t). If
d(q̈,q̇,q)Þ0, the system can only be driven to a neighborhood
the desired trajectory. In the following, we will introduce a di
turbance observer based tracking control which can be viewe
a ‘‘disturbance-observer-enhanced computed torque’’ scheme

Lemma 4:For a plant under constant disturbances, if~i! The
control input is chosen to beF5q̈d2k1ėd2k2ed2ŵd(q,q̇,q̈,t),

and ~ii ! the estimation algorithms ẇ̂do
52BTPEd and

ŵd(q,q̇,q̈,t)5ŵdo
(q,q̇,q̈,t)2KoEd are used, whereEd5@

ėd

ed#.

Then we can have limt→` ed(t)→0, limt→` ėd(t)→0, and
limt→` ew(t)→0, whereew(t)5wd2ŵd .

Fig. 1 Schematic diagram of the disturbance estimation
algorithm
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Lemma 4 is a direct extension of the results presented in S
tion 2. It should be noted that we do not have to start from
computed torque method. The estimated disturbance can be
to enhance literally any control algorithms.

4 Case Study„Tracking Control of a Telescopic Robot
Arm …

4.1 System Description. The schematic diagram of the ro
bot arm is shown in Fig. 2. Two actuators are used to control
anglef and lengthl . The mass of the extension arm is assum
to be small compared with the payloadM. The dynamic equations
were found to beM l 2/am(f̈1a1ḟ1a2f1g/l sin(f)1d1)5u1

and M /km( l̈ 1a3l̇ 1a4l 2g cos(f)1d2)5u2, where a1

5a f /M l 212l̇ /l , a25as /M l 2, a35kf /M , a45ks /M2ḟ2,
d1 andd2 are unknown disturbances,as andks are the stiffness
coefficients,a f andkf are the viscous friction coefficients, andu1
and u2 are the electrical currents applied to the actuators. T
torque in the joint and the force in the arm are assumed to
T15amu1 andT25kmu2 , respectively, wheream andkm are un-
known constants. In the following subsections, three full-st
feedback control algorithms are presented.

4.2 Adaptive Control. A classical adaptive observer@17# is
used to estimate the parametersam , a f , as , km , kf , andks . To
implement this algorithm, the dynamics are shown in a differ
form:

ẋ5Ax1BuTf ~x,u!1g~x,u! (7)

whereu is the unknown vector. The adaptive observer is chose
be

ẋ̂5Ax̂1BûTf ~x,u!1g~x,u!1K~x2 x̂! (8)

Based on whichu can be estimated fromu̇̂52 f T(x,u)BTPe,
wheree5 x̂2x, P is a positive definite matrix solved fromAk

TP
1PAk52Q, Q.0. More specifically, the update laws are

@ ȧ̂s ȧ̂ f ȧ̂m#52@2f 2ḟ u1#@0 1#PfF f̂2f

f̂
˙

2ḟ
G (9)

@ k̇̂s k̇̂ f k̇̂m#52@2l 2 l̇ u2#@0 1#Pl F l̂ 2l

l̂
˙

2 l̇
G (10)

The control law is then

u15
M l 2

âm
S f̈d1â1ḟ1â2f1

g sin~f!

l
1k1ėf1k2efD

(11)

u25
M

k̂m

~ l̈ d1â3l̇ 1â4l 2g cos~f!1k3ėl 1k4el ! (12)

Fig. 2 Telescopic robot arm
JUNE 2000, Vol. 122 Õ 333
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where â15â f /M l 212(l̇ /l ), â25âs /M l 2, â35 k̂f /M ,
and â45 k̂s /M2ḟ2.

4.3 Sliding Mode Control. The basic idea of sliding mode
control is to use switching~saturation! functions with gains larger
enough to cover the uncertainties. For the telescopic robot
ample, the sliding surfaces are chosen to beS15ḟ2ḟd1l1(f
2fd) andS25 l̇ 2 l̇ d1l2(l 2l d), wherel1 andl2 determine
the sliding dynamics. The control signals are then obtained fr
Ṡ152k1 sat(S1 /l1fb) and Ṡ252k2 sat(S2 /l2l b), where
sat~•! is the saturation function, andfb and l b are the widths of
the boundary layers. Since this is a standard design process
detail is omitted.

4.4 Disturbance Observer Based Tracking Control. The
robot dynamics are rewritten asf̈5u11wf and l̈ 5u21wl ,
where the lumped disturbances arewf5f̈2M l 2/am(f̈1a1ḟ
1a2f1g/l sin(f)1d1), and wl 5 l̈ 2M /km( l̈ 1a3l̇ 1a4l
2g cos(f)1d2). From the enhanced computed torque method p
sented in Section 3.2, the control algorithm isu15f̈d1k1ėf

1k2ef2ŵf andu25 l̈ d1k3ėl 1k4el 2ŵl . The error dynamics
are then ëf2k1ėf2k2ef5ewf and ël 2k3ėl 2k4el 5ewl ,
whereewf5wf2ŵf andewl 5wl 2ŵl . In matrix form, the er-
ror dynamics areĖf5AfEf1Bewf and Ėl 5Al El 1Bewl

where Ef5@
ėf

ef#, El 5@
ėl

el #, Af5@k2

0
k1

1 #, Al 5@k4

0
k3

1 #, and B

5@1
0#. By applying Fact 1, and if we choose the Lyapunov can

dateV(•)5E(•)
T P(•)E(•)1ew(•)

T ew(•) , whereP(•) satisfiesA(•)
T P(•)

1P(•)A(•)52Q(•) , and the subscript~•! denotes eitherf or l .
Then the adaptive lawėw(•)52BTP(•)E(•) guaranteesV̇(•)5

2E(•)
T P(•)E(•),0. SinceB has full column rank, from Fact 2 we

have limt→` E(•)(t)→0 and limt→` ew(•)→0.

5 Numerical Simulation Results
The simulation results of the three control algorithms shown

the previous section are presented in this section. The nom
plant parameters are assumed to beM51.5, ām5 k̄m51.0, ās

5 k̄s50.65, andā f5 k̄f50.65. The true plant parameters areM
51.5, am5km50.35, as5ks50.85, anda f5kf50.45. The de-
sired trajectories to be followed arefd5p/2 sin(2pt)1p and
l d50.2 sin(2pt)11. In addition to parameter mismatch, extern
disturbances are assumed to exist, and ared1525 sin(2pt)
135 sin(20pt) andd2525 sin(2pt)115 sin(20pt), respectively.

Adaptive Control. The observer gains used areK5@12
12

7
7#,

Pf50.1, and Pl 50.1, and the control gains arek1528, k2
5400, k3528, k45400. The adaptive observer fails to drive th

Fig. 3 Simulation results for the adaptive control
334 Õ Vol. 122, JUNE 2000
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system to the desired trajectory~Fig. 3!. This is mainly due to the
fact that the parameter estimation does not work properly un
external disturbances.

Sliding Mode Control. The control gains for the sliding mod
control algorithm arel1515, l258, fb50.05, l b50.02, and
k1525, k2525. Simulation results are shown in Fig. 4. Th

Fig. 4 Simulation results for the sliding mode control

Fig. 5 Tracking errors for disturbance observer based „DOB…

and sliding mode control „SMC…

Fig. 6 Tracking error plots for disturbance observer based
„DOB… control
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tracking performance is adequate, except the arm extension
However, the control signal chatters excessively due to the h
feedback gains.

Disturbance Observer Based Tracking Control.The observer
gains used areKo5@47.97 7.54# andP5@0.21

37.92
0.73
0.21#, and the con-

trol gains arek1528, k25400,k3528, k45400. Since the adap
tive control approach fails to work satisfactorily under extern
disturbances, we will focus on the comparison between slid
mode control~SMC! and the proposed~DOB! algorithm~Fig. 5!.
The DOB control achieves superior tracking. From the arm ext
sion rate plot, the control torque oscillates much less than tha
the SMC.

Finally, Fig. 6 shows the results comparing the DOB contro
with and without the estimation correction. It can be seen t
when the correction is not used, steady-state error exists in
length tracking. A major benefit of the correction is thus to elim
nate the steady-state error caused by external disturbances.

6 Conclusions
A disturbance observer based tracking control scheme for n

linear systems was proposed. The plant uncertainty, unmod
dynamics, and external disturbances are lumped into a disturb
term, which is estimated based on the state estimation error
two-step design. Based on the proposed disturbance estim
scheme, a tracking controller is then constructed which is asy
totically stabilizing in the sense of Lyapunov. The disturban
estimation based tracking control is compared with a class
adaptive controller and a sliding mode controller. A telesco
robot manipulator is used as an application example. The
posed control algorithm was found to generate superior track
performance and smoother control action. This superior per
mance is due to the fact that all the system uncertainties are c
pensated without requiring large feedback gains.

Appendix
Proof of Fact 1:
Choose the Lyapunov candidateV5eTPe1edo

T edo
. The deriva-

tive of this function along the trajectory of the error dynamics
then

V̇52eTQe12eTPBedo
12ėdo

T edo
(A1)

If the adaptive law

ėdo
52BTPe (A2)

is applied, Eq.~A1! becomesV̇52eTQe,0.
Proof of Fact 2:

~i! Since V(0)5eT(0)Pe(0)1edo

T (0)edo
(0)PL` and V̇5

2eTQe,0, it is obvious ePL` and edo
PL`. Also, since

*0
t V̇ dt5V(t)2V(0)52*0

t eTQe dt,`, ePL2.
~ii ! SinceePL` andedo

PL`, we haveėPL`. From the facts

ėPL` and ePL`ùL2, according to Barbalat’s lemma@18#, we
have limt→` e(t)→0. Fromë5Akė1Bėdo

and ~A2!, we have

ë5Akė2BBTPe (A3)

Since ePL` and ėPL`, from ~A3!, we haveëPL`. Because
limt→` *0

t ė(t)dt52e(0),`, and ė is uniformly continuous (ë
PL`), from Barbalat’s lemma, limt→ ` ė(t)→0. Since
limt→` ė(t)→0 and limt→` e(t)→0, from, ė5Ake1Bedo

, we
have limt→` Bedo

(t)→0. If B has full column rank, we can con
clude that limt→` edo

(t)→0.
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Proof of Lemma 3:
From ė5Ake1Bedo

, e(t) is generated from a linear dynamic
excited byedo

(t). Intuitively, we can assume that

edo
~ t !5Ko~ t !e~ t ! (A4)

is a good low-frequency approximation of the relationship b
tweenedo

ande, whereKo(t) is potentially time varying. In order

to satisfy the condition thatV̇,0, Eq. ~A4! must be consisten
with Eq. ~A2!. Taking the derivative of Eq.~A4!

ėdo
~ t !5K̇o~ t !e~ t !1Ko~ t !ė

5K̇o~ t !e~ t !1Ko~ t !~Ake~ t !1Bedo
~ t !! (A5)

Substitutingėdo
52BTPe and edo

(t)5Ko(t)e(t) into Eq. ~A5!,
we have

K̇o~ t !52~Ko~ t !Ak1Ko~ t !BKo~ t !1BTP! (A6)

Eq. ~A6! can be integrated in real-time. Or, to simplify the impl
mentation, the steady-state solution can be used:

KoAk1KoBKo1BTP50 (A7)

From Eq. ~A4!, the disturbance estimation correction is th
d̂(t)5d̂o(t)2Koe.
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