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SUMMARY 

The design procedure for an adaptive power management control strategy, based on a driving pattern 
recognition algorithm is proposed.  The design goal of the control strategy is to minimize fuel 
consumption and engine-out NOx and PM emissions on a set of diversified driving schedules.  Six 
representative driving patterns (RDP) are designed to represent different driving scenarios.  For each RDP, 
the Dynamic Programming (DP) technique is used to find the global optimal control actions.  
Implementable, sub-optimal control algorithms are then extracted by analyzing the behavior of the DP 
control actions.  A driving pattern recognition (DPR) algorithm is subsequently developed and used to 
classify the current driving pattern into one of the RDPs; thus, the most appropriate control algorithm is 
selected adaptively.  This “multi-mode” control scheme was tested on several driving cycles and was 
found to work satisfactorily. 

1. INTRODUCTION 

Over the past few years, significant research and development work was initiated, 
aiming to duplicate the success of the hybrid powertrain on passenger cars to light 
and heavy trucks.  The 21st Century Truck program in the US, spearheaded by two 
government agencies, Department of Energy and Department of Defense, is one 
such example [1.].  It is widely believed that the 3-times fuel economy improvement 
demonstrated by several prototype hybrid passenger cars, produced under the 
sponsorship of the PNGV program, will be an unrealistic goal for hybrid trucks, 
especially if engine-downsizing is not an option.  The downsized engine is generally 
not considered to be viable because the on-board energy storage element could be 
exhausted quickly for demanding truck operations.  The recently announced 
emission rule for the US 2007 model year trucks makes it very clear that exhaust 
emission is also an important performance metric for hybrid trucks [2.].   
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The objective of the power management control strategy is to develop a near-
optimal power management strategy that determines the proper power split and 
transmission gear position to minimize the fuel consumption and emissions of the 
hybrid truck. In addition, the control strategy also needs to ensure that the power 
demand from the driver is satisfied and the state of charge (SOC) in the battery is 
maintained within pre-determined range under all driving conditions.  The main 
challenge of the power management problem arises from the complex and coupling 
nature of sub-system efficiencies, together with the diverse driving scenarios. Many 
existing control strategies employ heuristic control techniques such as rules/fuzzy 
logic for the control algorithm development [3.-6.]. The majority of the heuristic 
approaches are based on single-element optimization concepts such as “load-
leveling” for engines, charging/discharging efficiency for batteries, etc.  For 
example, in the load-leveling concept, one attempts to operate the internal 
combustion engine around an optimal region, and uses the battery (or ultra-capacitor) 
as a load-leveling device. The obtained heuristic rules are usually tuned or optimized 
over a given driving cycle [7., 8.].  This approach can be used to design a control 
law quickly.  The main drawback, however, is the fact that the product from this 
design approach has no guaranteed performance or level of optimality.   

To ensure a known level of optimality, the control strategy can be obtained by 
using the dynamic programming (DP) technique [9.].  By discretizing the operation 
variables into grid points, global optimal control action can be obtained, up to the 
grid point accuracy.  Although the optimal operating policy is derived for a given 
cycle, it provides an insight into how improvement is achieved, based on which a 
sub-optimal control strategy can be designed.    

In this paper, a multi-mode control algorithm for the fuel economy and engine-out 
emission optimization of a parallel hybrid truck is presented.  First, the design 
procedure for constructing sub-optimal control schemes was developed for six 
representative driving patterns (RDP).  These rule-based, sub-optimal control 
schemes were obtained by learning the behavior of the DP optimal control laws 
under each of these driving modes.  In other words, a systematic procedure was 
developed to obtain rule-based control algorithms that approximate the performance 
of the theoretically optimal DP results.  It was found that the optimal DP results can 
be approximated by parameters associated with a power-split ratio curve, which 
makes it easy to extract sub-optimal control rules. 

A real-time driving pattern recognition (DPR) algorithm is then developed to 
switch between these six rule-based control strategies, with the assumptions that (i) 
driving pattern does not change fast and thus historical pattern is likely to continue 
into the near future; and (ii) the sub-optimal control strategies are different enough 
that selecting a proper one among them will result in significant performance 
improvements [10.]. The DPR algorithm is developed based on the idea that driving 
scenarios can be differentiated by objective measures such as average propulsion 
power, braking energy, and the ratio of stop time to total time.  It is determined that 



these measures can be extracted accurately by using data over a historical window, 
for example, during the past 150 seconds.  Two kinds of representative driving 
patterns can be constructed for the development of the real-time DPR algorithm--
imaginary RDP and partial driving cycles [11.].  The imaginary RDP maneuvers are 
used in this paper.  The DPR algorithm is trained to ensure a high success rate in 
identifying the driving pattern.   Finally, six driving cycles that the DPR algorithm 
has never experienced before, are used to assess the overall performance of the 
proposed control system.  

The reminder of this paper is organized as follows: in Section 2, the development 
of mode-specific sub-optimal controls by using dynamic programming is presented. 
The results obtained in Section 2 are used as “baseline single-mode control” and 
compared with the multi-mode control strategy presented in Section 3. Simulation 
results are given in Section 4. Finally, conclusions are given in Section 5. 

2. SINGLE-MODE SUB-OPTIMAL CONTROL  

The baseline truck studied in this paper is a Class VI, 7.3L diesel engine truck 
(International Truck, 4700 series), mainly used for urban delivery tasks.  The model 
and hybridization of this truck has been presented in previous publications [12., 13.], 
in which a parallel hybrid configuration of the truck with a smaller engine (5.5L) 
and a 49KW electric motor was developed. Key parameters of this vehicle are given 
in Table 1. In this section, the dynamic programming technique for the design of a 
mode-specific sub-optimal control strategy is described. Given a specific driving 
schedule, the optimal control policy is solved by the dynamic programming 
technique and an implementable rule-based strategy can be extracted from the 
optimal DP results. The term, “single-mode,” refers to the fact that the control rule is 
obtained from a specific driving pattern.  This design procedure will serve as the 
basis for the “multi-mode” control to be described in the next section.   

Table 1: Basic vehicle parameters 

Component Basic specification 

DI Diesel Engine V6, 5.475L, 157HP/2400rpm 

Maximum Power: 49 kW 
DC Motor 

Maximum Torque: 274 N-m 

Capacity: 18 Ah 

Number of modules: 25 Lead-acid Battery 

Nominal voltage: 12.5 (volts/module) 

Automatic Transmission 4 speed, GR: 3.45/2.24/1.41/1.0 

Vehicle Curb weight: 7504 kg 



2.1 Dynamic Programming (DP) Based Optimization 

The control of hybrid electric vehicles is formulated as an optimal control problem 
in the dynamic programming approach [9.]. The goal is to find the control actions 
(engine power, motor power, and gear selection) of the hybrid powertrain to 
minimize a cost function, which consists of the weighted sum of fuel consumption 
and engine-out emissions over a defined driving cycle: 
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where k  is the index of the time step, N  is the duration of the driving cycle, µ  and 
υ  are the weighting factors for the engine-out NOx and PM emissions, α  is the 
weight for terminal battery charge deviation, and SOC  is the battery state of charge. 
The terminal constraint on SOC ( fSOC ) is imposed to ensure the control strategy is 
not charge depleting. 

Once the driving cycle is given, the required wheel torque and wheel speed can be 
calculated. The torque and speed information becomes known inputs to the vehicle 
system.  The DP optimization is also governed by the powertrain dynamics, 
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where xg  is the gear number, the control, shift, to the transmission can be –1, 0, or 1, 
representing downshift, hold and up-shift, respectively, and mτ , mω  are the torque 
and speed of the motor, respectively.  In addition, the following inequality 
constraints are also imposed to ensure safe operation of the engine/battery/motor, 
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where eω  is the engine speed, and eτ  is the engine torque. 



A powerful algorithm to solve the above optimization problem is the dynamic 
programming technique.  DP has the advantage of finding the true optimality within 
the accuracy of computational grids [14.]. However, the computation efficiency of 
DP is low due to the “curse of dimensionality”.  Several techniques including pre-
computed look-up tables and vectorized operation are adopted to accelerate the 
computation speed in the MATLAB environment [15.].   

To study the trade-off between fuel economy and emissions, the weighting factors 
in equation (1) are varied as follows: { }0,5,10, 20,40µ ∈ and 

{ }0,100, 200,400,600,800,1000υ ∈ . The case 0µ υ= =  corresponds to the optimal 

fuel economy scenario.  The weighting factor, 65 10α = ⋅ , is used to assure the 
terminal battery SOC constraint is satisfied at the end of the cycle.  Detailed 
optimization results were presented in [9.]. It was found that significant reduction in 
NOx and PM emissions can be achieved at the price of a small increase in fuel 
consumption.  Hence, the case 40, 800µ υ= =  is chosen, which achieves a 
reduction of NOx and PM by 17.3 % and 10.3% respectively, at a 3.67% increase on 
fuel consumption compared to the 0µ υ= =  case.  The fuel economy and emission 
results from DP are shown in  

Table 2. The “new control” results are from the sub-optimal algorithm to be 
described in the next sub-section. 

 

Table 2: Results over the UDDSHDV cycle [9.] 

 FE (mi/gal) NOx (g/mi) PM (g/mi) Performance 
Measure * 

Baseline Control 

New Control 

DP ( 40, 800µ υ= = ) 

13.11 

12.81 

13.24 

5.770 

4.866 

4.642 

0.460 

0.435 

0.399 

843.96 

793.16 

739.56 

* Performance Measure: 40 800fuel NOx PM+ ⋅ + ⋅  (g/mi) 

2.2 Development of Sub-Optimal Rule-Based Control 

Although the Dynamic Programming approach provides an optimal solution, the 
resulting control policy is not implementable under real-time driving conditions 
because it requires the knowledge of future speed and load profile, and is 
computationally heavy.  Its behavior, on the other hand, is a good benchmark that 
other control strategies can be compared to or learn from.  Therefore, the second step 
of the HEV control design procedure involves knowledge extraction from DP results 



to obtain implementable rule-based control algorithms.  Overall, the behaviors to 
learn include the transmission gear-shift strategy, the power-split strategy, and the 
charge-sustaining strategy.  Here we assume that the regenerative braking strategy is 
simple—use as much regenerative braking as possible, subject to the current/power 
limit of the generator/battery. If the driver demands a harder deceleration than the 
regenerative braking can provide, the difference will be supplied by the friction 
brake.  This simple regenerative braking strategy assumes that the vehicle handling 
stability is not an issue.  

The transmission gear-shift strategy was found to be crucial for the fuel economy 
of hybrid electric vehicles [16.].  From DP results, the gear operational points are 
plotted on a slightly modified transmission shift-map (Figure 1).  It can be seen that 
the gear positions are largely separated into four regions and the boundary between 
adjacent regions represents optimal gear shifting thresholds.  A DP-inspired gear-
shift map was obtained after a hysteresis function is added to the shifting lines. 
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Figure 1: Gear operating points of DP optimization. 

A power-split-ratio, /eng demPSR P P= , is defined to quantify the optimal power 
split of the hybrid powertrain used by the DP algorithm.  The optimal (DP) behavior 
was found to closely follow a simple curve when we plot the optimal PSR values 
versus the power request over the transmission input speed, which is equivalent to 
torque demand at the torque converter output shaft (see Figure 2).  This figure shows 
that the optimal policy uses the recharging mode ( 1PSR > ) in the low torque region, 
the engine-only mode ( 1PSR = ) in the middle torque region, and the power-assist 
mode ( 1PSR < ) in the high torque region.  A least-square curve fit is then used to 
approximate the optimal PSR, shown as the solid line in Figure 2.   



It should be noted that the power split control scheme described above can not 
assure the battery SOC will operate within a desired operating range.  A charge-
sustaining strategy should be developed to maintain the battery energy.  More 
aggressive rules of spending battery energy can be used when SOC is high and more 
conservative rules can be used when SOC is low.   These adaptive PSR rules can be 
learned from the DP policy by specifying different initial SOC points in the 
simulation [9.]. 

The above new gear shifting control, power split control and charge-sustaining 
strategy are incorporated to construct a vehicle-level rule-based control strategy.  
This improved rule-based controller is evaluated using the original UDDSHDV 
cycle.  A linear SOC correction procedure is used to calculate fuel economy and 
emissions [17., 18.].  The simulation results are shown in  

Table 2.  It can be seen that the new rule-based control system improves the 
combined fuel and emission performance (the “performance measure”) over the 
original, intuition driven rule-based control law [12.] and is only slightly worse than 
the performance of the DP result which is optimal for the UDDSHDV cycle.  The 
improved rule-based control is obtained from the optimization result over one 
specific driving cycle.  It may not perform satisfactorily under other driving 
scenarios.  This motivates the multi-mode control study to be presented in the next 
section. 
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Figure 2: DP power split behavior (UDDSHDV cycle). 



3. DRIVING PATTERN RECOGNITION (DPR) 

3.1 Multi-Mode Driving Control 

The basic idea of a multi-mode controller based on Driving Pattern Recognition 
(DPR) technique was addressed in a previous paper [10.]. In a nutshell, this control 
concept assumes that we can use several Representative Driving Patterns (RDP) as 
basic templates, to represent all driving conditions. The switching will be 
determined by a DPR algorithm, which chooses one of the RDP to be the best 
approximation of current driving situation. This overall control algorithm assumes 
that the driving condition within a finite history window will continue into the near 
future.  

Figure 3 shows the concept of the multi-mode driving control, where “T ” is the 
sampling time step for measuring vehicle input signals and generating control 
commands. Usually, the time steps for measurement and control are different from 
each other, but in this figure, they are assumed to be the same one to simplify the 
problem. The “ pT ” is the duration (e.g. 150 seconds) of historical driving pattern 
which is sent to a buffer for DPR process. “ fT ” is the duration (e.g. 1000 seconds) 
of RDP, “ NT ” is the duration of control horizon (e.g. 5 seconds). The on-line 
procedures of the multi-mode driving control are described as follows.  

First, characteristic parameters in the historical window ‘ pT ’ are extracted, based 
on which the driving pattern over this historical window will be determined (see 
section 3.2).  Next, the control algorithm will be switched to the sub-optimal control 
algorithm corresponding to newly identified RDP. Finally, the control actions will 
continue for the next NT  seconds. The fact NT fT<<   (i.e., the control horizon is 
much shorter than the time duration used to predict the best RDP) is similar to that 
used in predictive controls or other receding horizon control algorithms. 
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Figure 3: Concept of multi-mode driving control based on DPR. 

3.2 Characteristic Parameters for DPR 

To identify proper characteristic parameters for DPR, we pre-selected four 
candidates: the averaged positive power demand, _dem meanP , the standard deviation of 
positive power demand during driving, _dem stdP , the averaged negative power 
demand, _ _dem neg meanP and the ratio of stop time against total driving time Stop 
time/Total time.  These four parameters were selected because they are easy to 
compute, and that they have close correlation with the fundamental vehicle operation.  
We then investigate the possibility to reduce the number of characteristic parameters, 
so that the final DPR algorithm could be as simple as possible. 

The last two parameters ( _ _dem neg meanP and Stop time/Total time) are good measures 
of the amount of regenerative braking energy and traffic congestion.  Interestingly, 
these two parameters were found to have a moderate correlation with _dem meanP  (see 
Figure 4 and Figure 5). These figures were obtained by simulating a hybrid 
passenger-vehicle over diverse driving cycles in ADVISOR [17.], that is it is 
possible to neglect the last two cycle parameters if _dem meanP  is properly used in the 
DPR algorithm. Furthermore, the deceleration and stop situations that _ _dem neg meanP  
and Stop time/Total time represent belong to “passive” situations, which are not 
directly related to the control variables presented in Section 2, including the power-
split ratio between engine and motor, and the sub-optimal gear ratio. Therefore, only 
two characteristic parameters were selected for the final design: _dem meanP and _dem stdP . 
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Figure 5: Correlation between _dem meanP  and Stop time/Total time. 

3.3 Selection of Representative Driving Patterns (RDP) 

The next task is to choose RDP templates, which could be selected from commonly 
used driving cycles [10., 19.], or constructed from simple mathematical operations.  
We choose the second approach because of the fact that the characteristic parameters 
can be easily scaled. 

Figure 6 presents the concept of creating the imaginary RDPs satisfying desired 
_dem meanP  and _dem stdP , where 0V  is the initial vehicle speed, 1iV ( 1, 2, 3, ...i = ) are 

candidates of vehicle speed after T∆ , and 0P  and 1iP ( 1, 2, 3, ...i = ) are power 



demands corresponding to 0V  and 1iV . Four rules used in the RDP creation process 
are described below. 

Rule 1: Once the desired _ _dem mean desP  and _ _dem std desP  are determined, the RDP 
creation process should proceed to achieve these desired values. 

Rule 2: The sign of power demand is randomly selected. However, once the sign is 
selected, it is mandatory to continue accelerating or decelerating for a minimum time 
duration which is randomly selected among pre-defined candidates of minimum 
times.  

Rule 3: In the case of acceleration ( 0P > ), if the initial vehicle speed is given, the 
engine and motor speeds are calculated in a backward way by using a simplified 
gear shifting map depending on the vehicle speed. Subsequently, the maximum 
engine and motor powers ( _ maxeP and _ maxmP ) corresponding to the given vehicle 
speeds are also determined.  The new power demand after T∆ is selected from grid 
points between 0 and maxP . In this process, the desired _ _dem mean desP  and _ _dem std desP  
provide a guideline for this selection. For example, in Figure 6, if 14P  is the closest 
grid point to _ _dem mean desP  and if _ _dem std desP  is small, one point within Region 1 
( 14P and neighboring points in a small region) is randomly selected.  If _ _dem std desP  is 
large, one point within Region 2 ( 14P and neighboring points in a larger region) will 
be selected. 

Rule 4: In the case of deceleration ( 0P < ), one grid point between minP  and 0 is 
randomly chosen. 

Table 3 summarizes six RDPs created from the rules illustrated above. It is 
assumed that we only need to differentiate among a small number of RDPs. The six 
RDPs are classified into the low power demand RDPs (RDP1 and RDP2), the 
medium power demand RDPs (RDP3 and RDP4), and the high power demand RDPs 
(RDP5 and RDP6). Each class includes two RDPs with different standard deviations 
in power demand. For example, RDP1 (see Figure 7) represents typical urban 
driving patterns where the average power level is low but the variation in power is 
large due to frequent stop-and-go traffic conditions. RDP6 (see Figure 8), on the 
other hand, resembles suburban driving patterns where the average power level is 
high and the standard deviation in power is relatively small. 
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Figure 6: Process for defining imaginary RDPs. 

 

Table 3: Six  imaginary RDPs. 

# of RDP _dem meanP  [kw] _dem stdP  [kw] 

1 33.1 29.3  (H) 

2 32.3 12.1  (L) 

3 54.8 38.0  (H) 

4 49.5 21.1  (L) 

5 71.4 40.0  (H) 

6 70.2 26.7  (L) 
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Figure 7: RDP 1 
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Figure 8: RDP6 



4. SIMULATION RESULTS 

For each Representative Driving Pattern, the dynamic programming design 
procedure illustrated in Section 2 is applied to derive an implementable, sub-optimal 
controller.  Since there are six RDPs, six respective control rules (C1~C6) are 
extracted.  These six control rules are extracted off-line, and stored in the multi-
mode control module for the on-line implementation.  The on-line implementation of 
the multi-mode control strategy is illustrated in Figure 9.  First, the historical values 
of the driver power demand are stored in a First-In-First-Out (FIFO) buffer. The 
buffer size is assumed to have pT seconds and the sampling time (T) is chosen to be 
one second.  As a result, the buffer always provides data in the most recent pT-
second for driving pattern recognition.  Every NT seconds, the DPR processor takes 
the stored power demand values in the buffer to calculate the necessary 
characteristic parameters (i.e., mean and standard deviation). The calculated 
parameters are then used to classify the current driving pattern into one of the six 
RDPs by the following algorithm.  

( ) ( )2 2

ˆ _ _ , _ _ ,arg min ,      1, 2,...6dem mean dem mean i dem std dem std ii
i

RDP P P P P i= − + − =  (5) 

where _ ,dem mean iP  is the averaged positive power demand of RDPi and _ ,dem std iP  is the 
standard deviation of positive power demand of RDPi.  In general, a weighting 
factor could be added in Equation (5), e.g., to weigh the error in power standard 
deviation more than that of mean power.  We chose not to add this weighting factor 
for simpler demonstration of the concept and the results.  According to the classified 
RDP, the multi-mode control module switches to the corresponding control 
algorithm for the next NT seconds. 
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Figure 9: Diagram of multi-mode control strategy 

The multi-mode control strategy developed above is evaluated by using the hybrid 
vehicle simulation model implemented in Simulink environment [9.].  The 
effectiveness of the multi-mode control is verified through driving cycles that have 
not been used in the selection of RDPs or experienced by the DPR algorithm.  The 
six evaluation driving cycles were selected from the cycle library in the ADVISOR 
software [17.]. These cycles include city, suburban and highway driving.  
Furthermore, many of these cycles were designed for cars/light trucks and are 
somewhat aggressive for the medium truck we have.  Note that none of these six 
cycles have exactly the same mean power or RMS power used in constructing the 
RDPs.  They represent real driving a vehicle might experience. 

The overall performance measure ( 40 800FC NOx PM+ ⋅ + ⋅ ) of the multi-mode 
control is compared with that of the single-mode control which uses a sub-optimal 
control rule extracted only from the UDDSHDV cycle.  Table 4 and Table 5 show 
the simulation results of the single-mode and multi-mode controller. For comparison 
purposes, the results achieved by the DP algorithm are also presented as the 
benchmark (performance limit). Note that the DP results are idealized (peek into 
future), and do not represent achievable performance.  In these simulations, T=1sec, 
p=150 and N=5.  It can be seen that the multi-mode control achieves better results 
over most of the test cycles compared with the single-mode controller.  It has worse 
performance only in UDDSHDV, the cycle that is the basis of the single-mode 
controller.  It is important to point out that tuning of pT and NT  is important for 
better results.  Figure 10 shows the classification history when UDDSHDV cycle is 
tested. It can be seen that all modes were used, except mode ‘5’, which is the high 
power, high standard deviation cycle.   

 



 

Figure 10: Results of driving pattern recognition over UDDSHDV 

 
Table 4: Simulation results of multi-mode control ( 40 800fuel NOx PM+ ⋅ + ⋅ [g/mile]). 

 UDDSHDV WVUCITY WVUSUB WVUINTER 

Single-mode 793.16 494.12 582.18 896.00 

Multi-mode 801.64 468.38 576.39 897.22 

DP 739.56 403.58 526.67 847.67 

 

Table 5: Simulation results of multi-mode control ( 40 800fuel NOx PM+ ⋅ + ⋅  [g/mile]). 

 NYCCOMP NYCTRUCK Manhattan 

Single-mode 401.17 6 67 .7 0  786.74 



Multi-mode 381.89 659.63 771.00 

DP 312.14 551.91 592.23 

5. CONCLUSIONS 

A multi-mode control strategy based on the driving pattern recognition scheme was 
developed for a hybrid electric truck to minimize fuel consumption and engine-out 
emissions over various driving scenarios.  Six representative driving patterns with 
defined characteristics were selected to represent different driving modes.  For each 
representative driving pattern, dynamic programming technique was utilized to 
determine the optimal power split and gear shift trajectory.  Implementable, sub-
optimal control algorithms associated with each representative driving pattern was 
then extracted by analyzing those optimal control actions.  This design methodology 
by learning from the dynamic programming results has the clear advantage of being 
near-optimal, accommodating multiple objectives, and systematic. 

A driving pattern recognition algorithm was developed, which used historical 
data (150 sec) in average and standard deviation of vehicle propulsion power to 
determine which representative driving pattern is closest to the current driving 
pattern.  The sub-optimal control strategy for the identified mode was then used for a 
short future horizon (5 sec).  The performance of the multi-mode control was 
evaluated by using six evaluation cycles.  It was found that the multi-mode control 
achieves significant performance improvement in almost all the cycles we tested.   
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APPENDIX 

Table 6: Nomenclature 

Symbol Meaning 

xg  gear number 

P  power (W) 

SOC  Battery state of charge 

τ  Torque (N-m) 

ω  rotational speed (rad/s) 

α  weighting factor on final SOC 

shift gear shifting command 

µ  weighting factor on NOx 

υ  weighting factor on PM 

Subscripts  

e  engine 

m  motor 

x  transmission 

Abbreviations  

DP Dynamic Programming 

DPR Driving Pattern Recognition 

HEV Hybrid Electric Vehicle 

PSR Power Split Ratio 

RDP Representative Driving Pattern 

SOC State of Charge 

 


